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In this paper we study composition series and em-
beddings of Verma modules induced from “nonstandard”
Borel subalgebras. This article can be viewed as a gener-
alization of Futorny’s work on imaginary Verma modules

for Agl) where the center of the Kac-Moody algebra acts
nontrivially.

Introduction. Let A be an indecomposable symmetrizable gen-
eralized Cartan matrix, g(A) = n_ @ 9 & n, the triangular decom-
position of the Kac-Moody algebra g(A) and W the Weyl group
for g(A). The “standard” Borel subalgebra b, and its opposite b_
are defined to be by = h @ ny. For affine Kac-Moody algebras, H.
Jakobsen and V. Kac and independently V. Futornyi have found
an explicit description of a set of representatives of the conjugacy
classes of Borel subalgebras (see 1.1) under the action of W x {1}.
We will call all Borel subalgebras not conjugate to by or b_, “non-
standard” Borel subalgebras. In particular for each subset X of
the set of simple roots II for g(A), one can construct a nonstandard
Borel subalgebra b and then for each A € $* one can use induction
to obtain what we will call a “nonstandard” Verma module M*()\).
For example if X = II then b} is the standard Borel subalgebra
and M()) is the “standard” Verma module. At the other extreme
X = 0 one obtains the “natural” Borel subalgebra and what one
might call a “natural” Verma module. A striking difference between
Verma modules induced from a standard Borel and those induced
from b% for X C II, is that these new nonstandard Verma modules
have infinite dimensional weight spaces. Consequently many of the
classical techniques used in the study of the composition series of
standard Verma modules do not seem to apply to this new setting.
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The purpose of this article is to describe, in the case that the cen-
ter of g(A) acts nontrivially, the composition series and embeddings
of Verma modules induced from “nonstandard” Borel subalgebras.
More precisely the main results appear as Theorem 5.2 and Corol-
lary 5.3 where they assert the following: The multiplicity of irre-
ducible modules in a local composition series for a Verma module,
M (}), induced by a nonstandard Borel subalgebra b, (see 1.1) is the
same as the multiplicity of irreducibles in a local composition series
for a Verma module, M,()), induced by a standard Borel subalge-
bra §+ C b4+. Moreover there exists an isomorphism of vector spaces
Homy(M(X), M(p)) = Homy(Me(A), Me(p)) for p € H*. Unexpect-
edly the representation theory of infinite dimensional Heisenberg
algebras plays an important role in the proof of these results (see
the proofs of 2.3, and 4.5).

This paper can be viewed as an extension of work done in [4]
where Futorny studied composition series and embeddings of Verma
modules for g(A) = AP, See also [1] and [2] for work related to
natural Verma modules.

The author would like to thank Thomas J. Enright for many
helpful suggestions that improved the exposition of this article and
also Nolan Wallach for simplifying the proof of Lemma 4.2.

1. Notation.

1.1. For any relation R on the set of integers and ¢ an integer we
set Zg. = {a € Z|aRc}. For example Zq is just the set of positive
integers. Let g be a simple finite dimensional Lie algebra over C,
f a Cartan subalgebra of g, A its root system with respect to b,
and II a set of simple roots and A, (resp. A_) the set of positive
(resp. negative) roots determined by II. Let fiy := B aca,ba so that
g =n_ ®bh P n, is the triangular decomposition of g. For any Lie
algebra a, let L(a) = a ® C[t,t™!] be the loop algebra of a and let

g=L(goCcapCd

be the associated nontwisted affine Kac-Moody algebra of g (see [8]
and [9] for more information about these algebras). We let

H=h+Cc+Cd
denote the Cartan subalgebra of g.
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Let é be the indivisible positive imaginary root for g and let A =
{a+né|a € A,n € Z} be the set of roots of §. As in [7] we call a
subset Ay of A a set of positive roots if
(1) fa,feAyand a+ € A, thena+ B € A,

(2) If a € A, then either a € A} or —a € Ay.

(3) Ifae Ay, then —a¢ A,

(See 1.2 for some examples of sets of positive roots.) A subalgebra
b of g is a Borel subalgebra if

b= '6 @ (®a€A+ga)

for some set of positive of roots A.

We now introduce some subalgebras of g. Let X C I, AX the
subroot system generated by X and A¥ = AXNA,. X determines
a reductive subalgebra m of g:

m=mf =m_®hom,

where my = @, AX go. X also determines a nilradical

. X .
Up = Ut = Doedy\Ax o

Consequently the decomposition of g = u_ @& m & uy induces a
decomposition of g;

ﬁl =u_ o ﬁ'l &b Uy
where
m=m*=Lm)®Cc®Cd and ux=uj = L(iy).
We also set
my = (m* @ Ct*')i*") @ s,
so that
n =m¥ o Hom.

Since ™ is reductive we have m = §h* @ & where £ is semisimple
and h¥ := {h € hla(h) = 0 for alla € AX} is the center of .
Moreover

b=t =m_@hy ®my
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where hx = Y [fa,8-o]. From ¢ we can also construct the affine
aeAX
Kac-Moody algebra
E=L(E)®CcdCd b

and define '

t = (E ® C[til]til) D my.
The difference between { and h is that i contains h¥ @ C[t¥!]t!
whereas & does not. To sum it up we have defined three algebras,
EChC ¢ and our goal is to relate certain composition series of
Verma, type modules for § to those for t. In order to introduce these
modules we now define the chosen Borel subalgebra for g. Set

X X X X X X * X X

One can check that by is a Borel subalgebra of g (see 1.2 below for
the appropriate set of positive roots).
Observe that since [m*, 1] C 1§, we have

[b¥,uf] Cui and [M¥,ui] Cug.

Note also

o If X =0, then m* = b, uf = ny, and by = b" is the natural
Borel subalgebra of g (see [7]).

o If X =1I, then m* = g, 4 = 0 and bf = b% is the standard
Borel subalgebra.

1.2. The representation theory of Verma modules induced from
the standard Borel subalgebra has been well examined by other
authors (see [8], and [9] and their references). In this article we
will relate the representation theory of Verma modules constructed
from by for X # II (in particular h* % 0 and 4 # 0) with Verma
modules for standard Borel subalgebras. This study will include
the representations induced from the natural Borel subalgebra as a
special case and consequently can be vie/wgl as a generalization of

Furtony’s work [4] where the case g = sl3(C) is analyzed.
Define

AY = {a+nbla€ A+\Af, ne€Z}
U{a + néla € AX U{0},n € Zso} U Af
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Ax(®%) = AX U {a +nbla € AX U{0},£n € Zoo}

and

A(ug) = Ax(u¥) = {a + nbla € AL\AX, n € Z}.

Every positive set of roots of A is W x {£1} conjugate to one of
the sets AY where W is the Weyl group for § (see [7], the action
of {1} is on §). Let Q¥ (resp. @1(m)) denote the monoid in $H*
generated by AY (resp. Ay(m¥)). Define A <* pif p—X € QY. Let
Q (respectively Q+_, Q+(m)) denote the root lattice of A (monoid
generated by Ay, A{ respectively).

1.3. For V a g-module and X € H* let V) := {v € V]|hv =
A(h)v for all o € $H} be the A-th weight space of V. Let P(V) =
{A € H*| V) # 0} be the set of weights of V and define Dx(A) =
{u € 95| <X )}. The category OX = OX(g) is defined as follows.
Objects of OX are $)-diagonalizable g-modules such that there exists
a finite number of elements Ay,..., ), € H* with

P(V) c ) Dx(X)

=1

and dim V) is at most countable. If A and B are objects in OX
then the set of morphisms from A to B is the set of all §g-module
homomorphisms. Note that all subquotients, direct sums and tensor
products of a finite number of modules in OX are in OX. We define
the categories OX () and OX (&) in an analogous manner except we
replace @5 in the definition of <* by Q¥ () and we require that
dim V3 < oo for all A € $* and all modules V in OX () and OX (8).
For M € OX and n € C define M™ = {m € M|d.m = nm}; then
since M is $)-diagonalizable, we have M = EBne(cM(”).

1.4. We will now construct some objects in OX. For L a Lie algebra
over C, let U(L) denote the universal enveloping algebra of L. For
A € H* define

M*(X) = U(8) Qux) Ca

where C, is the obvious one dimensional bf -module. This is the
(nonstandard) Verma module for the nonstandard Borel bY. We
can view C, as an mf @ $H-module by restriction and then define

My ()) = U(®*) BumXesn) Cx
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and ,
MF()\) = U(EX) Bueres) O

From the standard theory of Verma modules one knows that MX())
and M ()) have unique irreducible quotients which we denote by
LX()) and L¥ () respectively. Finally if N is an m*-module then
we can make it into a pf -module by letting uf act by zero. Inducing
up to g we obtain

U(N) :=U(g) Qu(pX) N.

In the case that N is irreducible we will call U(N) a generalized
Verma module for g.

From now on we fix X C II and we will often drop X from the
notation above except where it might cause some confusion.

Let P be a module for a Lie algebra a. The intersection of all
maximal submodules of P is the radical of P and is denoted by
rad o P. The proof of the following result is straightforward and is
left to the reader.

PROPOSITION 1.5. For X € §*, one has for any m-module
subquotient F' of Mu())
(1) U(F) = ©urU(F)y,
(2) there exists an epimorphism M()A) — N(A) where N(A) =
U(F (X)) and F()) is the irreducible quotient of Mu()),

(3)

dmU(F), = {0 if né¢A—Qs,

dimF, i peX—Qu(m),
(4) radN()\) is the unique mazimal submodule of N(A).

Using (4) above one sees that M()) has a unique irreducible quo-
tient which we denote by L()).

2. Lie algebras with triangular decomposition, contragre-
dient Lie algebras and their representation theory. In this
section we consider the structure of f, & and their representation
theory. More precisely we describe composition series and embed-
dings of Verma modules for m in terms of composition series and
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embeddings of Verma modules for & The relevant references for this
section are [5] and [9].

A triangular decomposition of a Lie algebra g consists of the fol-
lowing data: three subalgebras h, g_ and g,, an involutive anti-
automorphism o of g and a free additive semigroup Q4 C h* satis-
fying
(1) g=g-®hdgs,

(2) g+ # 0 and g4 = Boe, 0+, Where g1, = {z € g¢|[h, 2] =
a(h)z for allh € b},

(3) o(g+) =9- and oy = 15 and

(4) there exists a basis {a;};es of @+ consisting of linearly inde-
pendent elements of h*.

A Lie algebra g with triangular decomposition is called regular pro-

vided dimg, < oo for all @ € Q4. If o0 : g — @ is the Cheval-

ley involution of § and if € is simple then it is straight forward to

check that (h,my, Q4+(m),oln) and (h, &4, Q4(m),ol;) are Lie alge-

bras with regular triangular decomposition.

A Lie algebra g with triangular decomposition (§,g+,Q+,0) is
contragredient provided the following is satisfied:

(5) dimg,, =1forall je€J,
(6) the elements of g,,, g-a,, J € J and h generate g,
(7) forall j € J, ga, @ [ga,0-a,] D §-a, is isomorphic to sl3(C) as
an algebra and
(8) the sum ) [g4,8-a,] is a direct sum.
Jj€J
For example if € is a simple Lie algebra then £ is a contragredient Lie
algebra with respect to (h, &, Q4 (m), ol;), while m, with respect to
(h, M4, @+ (m),olx), is not if X C IT ((6) above is not satisfied).

The category O(g,T') for a Lie algebra g with triangular decom-
position T' = (h, g+, Q+, o) is the category of all g-modules M such
that M is h-semisimple, the weights of M all lie in a finite union
of fans D(A\) = {p € bh*|p € A — Q+}, and dim M, is finite for
all A € h*. As usual the set of morphisms between two objects
in this category is the set of all g-module maps between these ob-
jects. Note that in if & is simple and T = (h,&;,Q+(m),0l;) or
T = (h,my, Q4 (m),ols) we have O(g,T) = OX (k) and O(g,T) =
OX (1) respectively.
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Following [5] we say a Lie algebra [ is a Heisenberg Lie algebra if
Centl=[[,l]=Cz forsome zE€ L

For the rest of this section we will assume k¥ € C and [ is a Z-
graded Heisenberg Lie algebra with dim [, < oo for all n € Z. Set
[+ = ®n>olen and by = [, @ Cz. For k € C let C;, = Cw denote the
one dimensional b-module with [w = 0 and zw = kw. One says
that a Z-graded [-module V satisfies property € if (i) z.v = kv for
all v € V and (ii) there exists N € Z such that V,, =0 for n > N.
Let Vac(,V = {v € V|[;.v = 0} denote the vacuum space of V.

If X # II then we define

L=L% = (C[tlt @ h*) & Cc @ (C[t ']t ® b¥).

L is a Heisenberg algebra with a Z-grading determined by ¢. As for
[ in the previous paragraph, L determines two subalgebras L, and
L_.

We will later need the following result on Z-graded [-modules V.

THEOREM 2.1. ([5], Theorem 1.7.3) Let k € C\{0}. Every I-
module satisfying condition &€ is completely reducible and in par-
ticular is a direct sum of copies of M(k) := U(l) Qus) Cx. More
precisely if V satisfies condition €, then the linear map

f : U([) ®U(b() V(IC[+V -V
given by u @ v — u - v is an [-module isomorphism.

REMARK. From the theorem we see that if V satisfies €, with
k # 0 then V is free as a U([_)-module.
We will also need the following useful result.

PROPOSITION 2.2. ([3],[9], Chapter 2). Let M € OX(m) and € €
h*. Then there exists a sequence 0 = Mo C My C --- C My = M of
modules in OX(m) and a subset I C {1,...,k} such that
(1) ifi € I then M;/M;_1 = Lu(&) for some & > & (partially

ordered with respect to Q4 ),
(2) ifi ¢ I then (M;/M;_1), =0 for all u > £.
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Such a sequence of submodules of M is called a local composition
series of M at €. The irreducible factors M;/M;_; 2 Ly(&;) (where
a=thora= é) occurring in (i) with & > ¢ are called proper, all
others are eztraneous. Let u € h*. The multiplicity of Lz(p) in M is
the number of proper factors of type Lz(x) in any local composition
series of M at p and is denoted by [M : Lz(p)]. (This notion is well
defined: [9], Chapter 2.)

PROPOSITION 2.3. Let A, € h*. If A(c) # 0 then
[Mn(R) : L(p)] = [Me(A) : Le(p)]

and the map given by ¢ — ¢ := By (r) defines an isomorphism of
vector spaces

" : Homg(Mm(X), Min(g)) = Homg(Me(X), Me(p)).

Proof. For any A € $* we will view Mg(A) C Mp()) in the obvious
manner. First suppose A(c) # 0 and that 0 = Mo C M;--- C
M, = Me(A) is a local composition series at 7 for the &-module
Me()). Define M; = U()M; C Mu()). Since [L4,E_] = 0 one has
M; = U(L_)U(&)U(Ly)M; = U(L_)M; and thus if we let L act
trivially on M;/M;_; then the universal mapping property of the
tensor product implies

Mi/Mi—l = U(m) ®U(E@L+) (Mi/M;-1)

as t-modules. If (M;/M;_;), = 0 for y > n then (M;/M;_,), =
0 since P(M;/M;_,) C P(M;/M;_;) ~ Z¢6. We claim that if
M;/M;_; = Le(u;), then M;/M;_y = Lun(w;). Certainly Lpy(p:)
is a quotient of M;/M;_,. Let 0 # u € U(t) QuioLy) Le(wi) be a
weight vector. Then we can write

U = Zaljul @ v

l!j

where {u;}1er and {v;};es are basis elements of weight vectors for
U(L-) and Lg(p;) respectively and a;; € C. Among all indices
(I,7) with oy; # 0 let (a,b) be such that v, has minimal weight
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(there may be many such pairs of indices). Let v,, be a nonzero
highest weight vector in Lg(p;) and suppose v, has weight p; — ¢
and 0 # ¢ € Q4+(m). Since au # 0 and the v; are linearly in-

dependent one has ) a,jv; # 0 where J' is the set of indices
ied’!
J with v; € Le(u,)m . Now Lg(,u,) is irreducible, so there ex-

ists w € U(E)g with w()_ @,v;) = v,. The fact that v, has
Jjed’
minimal weight implies that wv; = 0 for j ¢ J’ with «;; # 0.
Thus w( ) azjv;) = 0 and [¢, L_] = 0 implies that wu = Z[ul ®
igJ’
Zaljwv] | = Z,Bﬂu) ® v,, where 8, = 1 and 3 € C. Since

(L )®Cuv,, is 1rredu(:1ble as an L-module (Theorem 2.1) one must

have that U(m)u = U(M) @y igr, ) Le(pi). This proves the claim.
Observe that we have also proven that if F' is an irreducible sub-

quotient of Mw(}) then F' = U(M) @y gL, Le(n) for some p € H*.
Let now 0 # u € Vace, My(t), then since [Ly,8_] = 0 we have
that u € Vacm, Mu(p). If v € Vacm, Mn(p) one has

v =2 ou ®v;

Li

where {w;} is as in the preceding paragraph and {v;} is a ba-
sis of Me(p). Since [Ly,t_] = 0 and v € Vacm, Mm(y) we have
that | L+,Za1]u1] = 0 for all j. Using Theorem 2.1 we have

Zm]w € (C for all 7 ie. v = Z,@ij for some 3; € C. Thus

Vac e, Me(p) = Vacm, Mu(p). Usmg this fact, together with the uni-
versal mapping property of Verma modules, the reader can deduce
that the map ¢ — &|a,(n) is a bijection from Homu(Mm(A), M (1))
to Homy(Me(A), Me(p)). O

3. A basis for U(L(g)).
3.1. Let p be the rank of g and let C = {yq, hela € A, 1 < k < p}
be a Chevalley basis of g. Let {:zrj}dlmm+ C C be a basis of my and
{z;}2_ diminy C C be a basis of m_. Here we assume that
(1) if z; € gg, and z; € gg, with §; < f3;, then ¢ < j and
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(2) if z; € gﬁn then z_; € g—ﬂ;- '
In addition we define z; < z; if ¢ < j. Let {yj};-ii:{mf C C (resp
{y};2- dgimi, C C) be a basis of root vectors of ¥ (resp. uX)
satisfying (1) and (2) above. We also define y; < y; if 1 < 5. If
2; € @ is a Chevalley basis element, let {z;, &;,z_;} be the sl3(C)
triple determined by z;. Finally we totally order the Chevalley basis
C by
Yyr<zg< hi<hj<zr<uy

if —dimuy < f < -1, =dimmy <g< -1, 1<:1<) < p,
1 <k <dimmy and 1 <! < dimuy. Note that this is a total
ordering on C' and is compatible with the usual partial ordering on
¢ induced by the positive roots of A.

Next we will order a basis of L(g) using (1) and (2) above. Set

z(m)=zQt"

for z € g and m € Z. L(g) has a basis B(L(g)) := {z(m)|z €
C, m € Z} which we totally order by defining

(3) z(m) <y(n)

if either (1) m < n or (2) m = n and z < y. (Note that if z(m) €
L(g)o and y(n) € L(g)s with a < f and z and y are in C, then
z(m) < y(n).) In particular u_ has a basis

B(u-) = B(L(g)) Nu- = {gi(m)|1 £ —i < dimuy, m € Z}.
In fact, if a is any subalgebra of L(g), then we define
B(a) = B(L(g)) N a.

In the following we will use the multi-index notation a = (a4, ..., q,)
fora; € Z. lfr > 1 and (i,m,p) = (il_,...,iT,ml,...,mT,pl,...,pr) €
Z*, then set z = zimp = 2, (m1)P™" - z;, (m,)Pr. We will use the
convention
Z=Zimp=2,(m1)?" 2z, (m,)”" =0 if p; < 0 for some 7 and
Z=Zimp = zil(ml)p’i ez (me )P =1 if p; = 0 for all s.

Now define

&=z ()P ez (m)P s ()
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for1<j<r. Forl1<j<¢<r define

Zil (ml)pl e Zij (mj)pj—l e Zif (mg)Pg"l e Zir(mr)pr
P it ¢
ziy(Ma)P* o 2y, (m)Pr % o 2 (my )P

ifg=¢

In other words 2% is essentially just Z where we’ve decreased the

exponents pe and p; by one.
By the Poincaré-Birkhoff-Witt Theorem U(u_) has a basis

BU(u2)) := {gimp = ¥iy (ma)" ™ - - yi, (me )77 i, (m)
< Yi,41 (Myr1)yi, (m;) € B(u_)} U {1}.

If f € U(u_) is a polynomial in reduced words from B(U(u_)) then
we define the degree of f to be the maximum length of any word
appearing in f and let U(u_),) be the set of polynomials of degree
p or less. Thus if § = y;,(my)P~" -+ -y;.(m,)P" then degy = 3; p:.
Define also U(u_)() = 0 for p < 0. We totally order the words in
B(U(u_)) by degree and then among words of equal degree we order
reverse lexicographically. Moreover if w = pzimp and v = &yap,e
with zimp < Yab,c and g, € € C\{0}, then we also write w < v. For
example y_s(7) < y-2(3)%y-1(4)® < y-2(3)y-1(5)*.

REMARK 3.2. Suppose t is a Lie algebra over Cand a C tis a
subalgebra with basis {yi}ier. Let {z;} ;e be a basis complementary
to {yihier (i-e. {yi}ier U {z;}jes is a basis of t) with J totally
ordered by a relation <j. Then it is well known (see [HS]) that
U(t) is a free right U(a)-module with U(a)-basis {2])* - -- 21** |m; €
Zso and J; <y jiy1} U {1}. This in particular implies that if
gt ezita = 2t o zprd with Iy <5 --- <5 L, ng € Zyo, then
m; = n;, j; = I; for all : and a = &'.

In addition if F' is an m-module with basis {z;};es then by the
Poincaré-Birkhoff-Witt theorem

U(F)=U(@) Quew F=Uu-)®F

has a basis consisting of vectors of the form y;, (m1)P~* - - - y; (m, )P z;.
We order this basis lexicographically by declaring ¥i m pZx < Yab,ci
if either ¥imp < Yab,e OF if Yimp = Yabe but k& < [. In addition
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we will later use the fact that U(F') is a free U(u-)-module with
U(u-)-basis {z;};eJ.
Finally if '
U = Z uij,m,pyi,m,pmj

then we let
LinSp (u) = Span {yimpe;| 1 m p # 0}

be the span over C of the basis elements y; m pz; occuring in the
decomposition of u above that have nonzero coefficients.

4. An irreducibility criterion for subquotients of M()).
4.1. In this section we will assume that A(c) # 0 and F' is an
m-subquotient of Mp(A). The main result in this section is an irre-
ducibility criterion for

U(F) = U(ﬁ) QU () F (see 4.6).

There are a couple of technical lemmas that will be used throughout
the case by case proof of this result and it is best to get them out
the way before diving into the analysis.

Nolan Wallach kindly provided the author with a nice proof of
the first technical result:

LEMMA 4.2. Ifa € A(u_) is a nonsimple root and y € g_, s
nonzero, then there exists z € B(n,) such that 0 # [z,y] € u_.

Proof. Recall that we always assume X # II so that A+\AX # 0.
Set p = rank g. We will prove this result by induction on p. If p = 1,
then X = 0 and the result follows.

Suppose now p > 1. Let {¢;}?_, = Il be Dynkin’s enumeration of
the set of simple roots in A, (see [8]) and let n; € Z be nonnegative

p
integers such that a = Z—niai. Recall that the support of «,
=1

denoted by supp (@), is the set of all indices ¢ such that n; # 0. If
|supp ()| < p then we have that « lies in a subalgebra of g that is of
smaller rank and by induction the result follows. Consequently we
may assume that |supp (a)| = pso that n; > 0forall 1 <: < p. Let
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(, ) be the Killing form on h* and for any 8 € A, let 3 = 28/(8, B)

denote its coroot.
We first consider the case that ny > 1 for some 1 < k < p. Here
p

@ cannot be of type A; as the longest root of A, is of the form Z Q;
1=1

and thus n; = 1 for all 2. Suppose that (a,&;) > 0 for all indices ¢

such that n; > 1. We will prove by induction on p that this is not

possible. Consider the equality

2=(a,@)=— Y ni(ay,&)— Y nioy, &)

in, >1 iin, =1

If (e, &) > 0 for all indices 7 with n; = 1, then we obtain a contra-
diction. Hence there exists an index j with n; =1 and («, &;) < 0.
Then
(a,8;) = =D nie, &) =2 <0

i#]

so that
0< =Y ni(ai,é;) <2

i#]
(this is nonzero as the node j is connected to at least one other
node). Since n; > 0 for all ¢ this implies (a,&;) = —1 and if &
is such that ny > 2 then (ax,&;) = 0. Consequently a + «; is a
negative root and |supp (a + ;)| = |supp(e;)| — 1 since n; = 1.
Now induction on p implies that there exists a k with ny > 2 such
that a + a; + ai is a negative root.

The calculation

(a+aj+ak,ézj)= (a,dj)+2+(ak,d]-)= —-14+2=1

recall (o, &;) = 0 for [ withn; > 1). Hence a+ar = a+aj+ar—a;
J J J

is a negative root.
p

Now we have reduced to the case a = — Za,-. By considering

the Dynkin diagram of g one can deduce til_alt there are at least
two indices #; # t; such that a + «;, and o + «;, are roots in A.
If ;,, @i, € A(ty), then we choose 0 # z € (i4)a,, and the result
follows as supp(a+«a;, ) contains an index j with a; € A(uy) so that
a+a; € A(u). If a;, € Ay(m), then since supp(a + a;, ) contains
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an index j with a; € A(t}), there is a basis element z € (m4),,,
with 0 # [z,y] € u_. Ll

The second technical result will help consolidate later calcula-
tions. Before we state it though we need to introduce some more
notation: Suppose

y=vy,(m) -y, (m.)’" , e€Z and z€g.
Define
] € iy @}
(2,9 2l eu}
JL=JL(2,9,¢) = {j € J_|yi,(m;) > [2,9:,])(e + m;)}
(2,9, ¢) = {5 € J-lyi,(m;) < [z,y;,](e + m;)}.

LEMMA 4.3. Suppose A(c) # 0 and F' is a subquotient of Mn(X).
Let T be a nonzero weight vector in F', z € g, e € Z, and §y =
v, (my)Pr -y (m, )P with degy > 1. If either (1) z € uy and
e 0or(2)e>0 and z € my, then

A= Y pilzylle+m)Fe+ Y piglzulle+my)e

TIO # [yzﬂz €
€

jeJt JEJIUJe
j-1
Y Y pipelies 2,33, ) (e + my 4+ me)yta
jeJL\{1}¢=1

+ Z Z pjpf[[zayij]vyif}(e—l—mj _{—mg)gjﬁ:z.
JEI BTN} 741

+ 3 6lyi, (2,93, )](e + 2m;)572 mod Uu_)(p_g) @ F

1<5<r

where

o —pilps —1)/2 of jeJUJL
! pi(p; —=1)/2 if jeJt

and p=degy = Zpi.
We use the convention z° = 1 in U(g) for any nonzero element

z € g and if an index set for some summation is empty, then we
take the summation to be zero.
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Proof. First observe that if e > 0 or e < 0 then [[2(e),y:,(m;)],
Yie(me)] and [2(e),y;,(m;)] act on any element in U(F) by [[z,y;,],
Yic](e +m;+mg) and [2,y; ](e +m;) respectively i.e no central term
appears. Moreover if either (1) or (2) above holds then z(e)z = 0.
Now the Lemma follows from the calculation below.

T P]"'l

)T =Y Y Yiy(ma)" - yi (m;)”

=1 =0

py—a=1 |

.[z,yij](e+mj)yi](mj) 'yi,(mr)”’:E

p]—l
= Z (Z ,y,J e+m1)y T
]E-ﬂ a=0

PJ"l

+ E [y, (ma)P* - - i, (m5)%, [2, 95 ) (e + my)]
i, (my)P o 'yir(mr)p’i)

S (z P Lo (e +mj)

jeJTUJE \ a=0
PJ"]-

+ Y yi (ma)P -y (m) [z, vs,)
a=0

(e 4+ mj), ys, (mj)Pr=et - yir(mr)”']f)

= Y pilz,y,)(e +m;)y’z
jeJt

pi(pi —1) 3
+ 3. M,y [, ll(e + 2my)5 7
JjeJt
-1
+ Y. Y opipelvio [z, v ll(e + my + me)g'ta
jeJ\{1}€=1
+ > pitlzyl(e + my)z

jeJTUJC
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pip; ~1) 3 .
+ Z J'(__Ji—'_)'y“[[zayiijij](e_*_ 2m]):c
jedruJde

+ Z i Pjpg[[z, yi]‘]7yi¢]

JEJTUTN{r} é=j+1
(e+m; + mg)g%f mod U(u_)p—2) ® F. ]
O

4.4. If F is an irreducible subquotient of Mpy(A), F is of the
form U(M) @y igr,) I’ where F' is a subquotient of Me(}) (see
the observation in the proof of Proposition 2.3). In particular
F is a free U(L-)-module with a U(L_)-basis of weight vectors
{we}eez=. Fix now a basis of U(L_) of weight vectors {v,} er so
that B = {v,we|(7,€) € I x Z} is a basis of F'. Now the fact that
dimF, < oo for all g € H* and P(F) C A — Q4+(m) implies that
one can enumerate the basis B by negative integers, say {i}iez o,
so that
(1) each z; is a weight vector of the form v,we and
(2) if z; has weight A; and A; > Aj, then ¢ > j.
From now on we will assume that F'is an m-subquotient of Mp(X)
which has a basis {z;} that satisfies (1) and (2) above and we order
this basis by z; < zj, if ¢ < j. Note that My(A) also has a basis
{z;} that satisfies (1) and (2).

Now suppose that z € h% and h € hx are both nonzero. Let I be
a finite subset of Z<o and {m,}ses a finite set of distinct integers.
Let e < 0 and (j,7) € I x S. If one writes z; = v,we and commutes

h(e 4+ m,) past v, (if e < 0 then no central terms appear) then one
can rewrite h(e + m,)z; in the form

Z QgrVyWer

5’
where ag € C. Then for e < 0 and (z,s) € I x S, Remark 3.2 and
(1) above imply

(3) z(e+ ms)z; &€ Span {z(e + m,)z;, h(e + m,)z;]
(4,r) # (1,3),(J,r) € I x S}.
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This is a key observation that we will use in the proof of

PROPOSITION 4.5. Suppose A(c) # 0 and F is a subquotient
of Mn()X) having a basis {z;} satisfying 4.4.(1) and (2). If B €
Q+\Q+(m) and radU(F)r—p # 0, then there exists « € Q4 \Q+(m)
and p € Z such that radU(F)\-pra+ps # 0. More precisely if 0 #
u € radU(F)y—p # 0 for some B € Q\Q4+(m), then there ezists
@€ Qi \Q+(M), pEZ, and Y € (U(ny)0y)asps such that Yu # 0.

Proof. U(u_) has a basis {yimp} as in section three so that
{Yi,m,pz;} forms a basis of U(F) that is lexicographically ordered
from the ordering induced from B(U(u-)) and {z;};ez.,. Recall
that U(u_) is filtered by degree (see §3) and thus U(F) = U(u-)®F
is also filtered by degree in U(u_).

Let now 0 # u € U(F) _p with 8 € Q4+\@+(m). We have where
u{;m,p € C. Let yapczq be a basis vector that is maximal among
all terms with nonzero coeflicients in u above. Set fmax = Yabe
and Zmax = z4. Certainly 8 € Q4+\Q4+(m) implies yape # 1, so
deg Ymax > 0.

Case 1. J_(z,§) # 0 for some z € B(ui4)U B(my) and some § with

maximal degree occurring in the decomposition of u above. Fix one
such z € B(uy) U B(my). Set

Max = {g = Y; (ml)Pl [P yir(mr)Pr‘
y has maximal degree in v withJ_(z,7) # 0}.

Then Max is not empty by hypothesis. Among all monomials
y € Max consider their factors y;, and let y,; be one in a root space
8o, where o, is a minimal root among all such factors. In other
k

words a,; is a minimal element in
{ai,|yi, € fa, , and y;, occurs as a factor in some § with § € Max}.

Let Ymin = Ya',b'cr € Max be a monomial that contains the factor
Yo, and define Jiin = Jmin(2) = J_(2, Jmin) and S5, = J(2, Gmin)-
Let j be an index such that ul,,., # 0 and set Tmin = ;. We will
now reduce to the case that all monomials with maximal degree
have only factors y;, lying in a root space g4, with a;, simple.
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By Lemma 4.3

2(€)YminTmin = Z cj[z,ya;](e+b;-)gjf;ﬁninﬁn mod U(u_) -1 ®F

J€JImin

where ¢ = deg §Jmin and either ¢ < 0 and z € B(ity) or e > 0
and z € B(my). Let S; be the summation above. By Remark 3.2
the fact that Jyin(z) # 0 and e < 0 or e > 0, implies Sy # 0. If
Y = Ui,m,p, T = z; is a different monomial occurring in u then

Ae)gz = Y. pilzyi)(e+my)iPz  mod Uu_)_1) ® F.
JjEJ-

where p = deg §. Since JminZTmin has maximal degree for the mono-
mials in u we have p < ¢/. Let now 77 be the summation above.
In order for Ti € LinSpan (S51) + Span (U(u_)(,-1) ® F') one must
have p = ¢ and by Remark 3.2, one also has C[z,y;,] = Clz,ya],

m; = b, §lun = ¥ and T = Zpn as € K 0 or € > 0. Conse-
quently ¢min = ¥ and T = Znyn which is a contradiction. Hence
Ty ¢ LinSpan (Sy) + Span (U(u_)(p-1) ® F).

Now our element z(e)u has the same degree ¢’ as u and z(e) sends
each monomial of maximum degree to a monomial that is of higher
weight with respect to the finite root lattice Q Since there are only
finitely many nonzero weight spaces in g®°', after applying case (1)
to u finitely many times we arrive at

Case 2. J_(z,y) = 0 for all z € B(uy)U B(my) and all § with
maximal degree occurring in the decomposition of u above: This
implies that if § = yimp is a monomial in v of the same degree
as Umax (recall JmaxTmax is the maximal element occurring in the
decomposition of u), then the summations with indices in J_(z, %)
in the formula 4.3 vanish. By Lemma 4.2 above we know that for
all such maximal degree monomials i mp = yi, (m1)P* - - - y;, (M4 )P,
and for all the factors y; € 0o, i, € A(uy) are simple roots.
In particular this holds for gmax = ¥a, (01) - - - Y. (bs)®. Then for
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e 0and 1< 1< s, one has by Lemma 4.3

y—ax(e)gmaxfmax = Z _Cj(cj - 1)ya,(e + 2bj)37r]g;x§7max
1<1<¢

+ Y Y cicea(ha)Yag(bj + be + €)FienxTmax

1<1<s~1 £=741
a,=a;

+ Z cjgjr};mxha,(bj + €)Tmax  mod U(u_)—2) @ F.
1<1<s

Let Sy, Sq, and S3 denote the first, second, and third summation
respectively above. We will now consider, for a fixed [, 1 < [ < s,
the summand

W = Gy (€ + 5)Ema

in the summation S3. Now h,, = z + h where 0 # z € hX and
h € hx. For e € 0 the element w is thus nonzero by 4.4.(3). In
addition observation 4.4.(3) also implies that w is not in

LinSpan ( E ngfnaxhal(bj + €)Zmax) + Span (U(u-)(c-2) ® F).

1<7<s,3#
aJ=Bl

Moreover w ¢ LinSpan (S;) + LinSpan (S2) + Span (U (u-)(c-2) @ F')
as Sy and S; have factors y,;(2b; + €) or y, (b¢ + b; + €) in them
with e < 0 (use Remark 3.2).

On the other hand consider an index (i,m, p,j) # (a,b,c,d) and
set ¥ = Yimp = Yi, (Mm1)" -+ -y; (m,)?", T = z;. Then by Lemma 4.3
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we have for e < 0 (so that J™ = 0)

Your(€)TZ= 3 pily—an,vi,)(e +mi)FE

JEJ-
+ 3 piF [Y-arr yi, ) (e + m;)Z
jeJe
+ ) €ilyi, [Y-air v, )l (e + 2m;) 77 2
i=1
i1
+ Y S pipelly-a vi, ), vil(e + mj + me)g'tz
jeI N1} é=1

+ ) Z PiPellY—ar> ¥i, ), Yie

j€T\{r} =j+1
(e +m; + me)g’z mod U(u_) 9 @ F

where p = degy and ¢; € Z. For 1 < 2 < 5, let T; be the :-
th summation above. Our goal is to show that none of the w ¢

5
> " LinSpan (T}) + Span (U(u_)(p-1) ® F).
=1
Suppose p < ¢ — 1, then Ty, T3, Ty, Ts all have degree ¢ — 2 or
less so

5
w ¢ Z LinSpan (T3) + Span (U(u_)p-1) ® F).

=2

But w ¢ LinSpan (11) + Span (U(u-)p-1) ® F') as e < 0. Thus

5
w ¢ > LinSpan (T;) + Span (U(u_) -1y ® F) .

1=1
Suppose now p = ¢’. Here y; m p has maximal degree so each factor
Yi, of ¥im,p must come from a root space of a simple root «;,. 71 =

T4 = 0 by the hypothesis of Case 2 and thus w ¢ Y LinSpan (T})+
i=1,4
Span (U(u_)(,-1)® F). Since a;; is simple and so is a,, we have that

[Y—-a;> ¥i,] = ha, Or O
depending on whether ¢; = a; or not. Thus

[Yies [Y—ars ¥i;]) (€ + mj 4+ me) = i, (ha,)yi (e + m; + me) or O,
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accordingly. Hence for e < 0 we have that

w¢ Y LinSpan(T;) + Span (U(u-)p-1) ® F) .

1=1,34,5

This leaves us to study 7;. Now in order for

5
w € Y LinSpan (T}) + Span (U (u_)p-1) ® F)

i=1

one must have by Remark 3.2 that
7 = Ghax and Y0, 35, (e + M7 = hoy(€ + b)) Erma.

Using the observation 4.4.(3) one has that Zm.x = & and m; = b;.
Thus y;,(m;) = Ya,(br) so that § = Fmax. But this contradicts the
assumption (i,m,p, ) # (a,b,c,d).

O

THEOREM 4.6. If A(c) # 0 then U(F') is irreductble if and only
if F is irreducible.

Proof. Suppose F is a reducible subquotient of M()) i.e. there
exists a proper m-module N of F. Then uy.N = 0 when we view
N C U(F) and N, # 0 for some g € A — Q4(™m) so that N’ :=
U(g)N = U(u_)N C U(F) is a proper g-submodule. Hence U(F)
is reducible.

For the converse we assume that A(c¢) # 0 and F is irreducible.
First we claim that rad (U(F))x—s = 0 for B € Q+(m). This is be-
cause (rad 3U(F))s—p C Fi_p for all irreducible subquotients F' of
Mn()) and g € Q4+(m). Thusif F is irreducible and rad U (F)s—g #
0 for some S then rad ;U(F') contains a generator of F' and hence
rad ;U(F) = U(F). Clearly this is nonsense. Now if rad (U(F))r—g #
0 for some 8 € Q4 we could use Proposition 4.5 inductively to ob-
tain a nonzero element in rad (U(F')),_g for some B’ € Q(m) which
leads again to a contradiction. Finally from Proposition 1.5 we see
that rad U(F') = 0 i.e U(F)) is irreducible. O
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5. Composition Series and Embeddings of Verma mod-
ules for A(c) # 0. In this section we restriet ourselves to the case
that A(c) # 0.

Let 4 € H* and M be a module in OX. As in section two, a
sequence 0 = My C M; C --- C My = M of modules in OX and a
subset I C {1,...,k} such that
(1) if i € I, then M;/M;_; = L¥(u;) for some p; > p (partially

ordered with respect to @),

(2) ifz ¢ I then (M;/M;_1)x = (0) for all A\; > p
is a local composition series at p. If p; > p, then we let [M : L{p;)]
be the number of times that L(u) appears in (1) above. Of course
this definition may depend on the sequence M; C --- C M} =
M above. Consider a countable direct sum of irreducible modules
®iezL(1). This module is in the category OX but it does not have
a local composition series at p. So this notion is not well defined
for all modules in OX. On the other hand, for M = M()) with
A(c) # 0 this number is well defined (see 5.2 below).

We will now essentially follow the argument of [4] Lemma 9.

For a g-submodule N of M()) let [N] := N N Mu(A).

LEMMA 5.1. Every nonzero submodule N of M()) is generated
by [N] and [N] # 0.

Proof. We may assume that N is a proper submodule of M(}).
If 0 # v € N, then by Proposition 4.5 there exists a Y € U(@)
such that 0 # Yu € rad Miy()\). Hence [N] # 0. Let N’ be the g-
submodule of N generated by [N] i.e. N' = U(u_)[N] and suppose
that N' # N. Then N/N' C M(X)/U(u_)[N] = U(Mn(X)/[N]).
Let
(1) U = ) Yi,m,pTimp
where the yimp are basis vectors in U(u_) as in section three and
where the z; m p are elements of My (A)/[N]. If u # 0 in N/N’ then
Tim,p 7 0 for some index (i, m, p) appearing in the decomposition of
u. Let p € h” be such that each such nonzero z;j m, p is a linear com-
bination of weight vectors in Mu(A)/[N] of weight greater than or
equal to p. Now consider a local composition series for My (A)/[N]
at u: 0= Mo C M; C --- C My = Mu(N)/[N]. Let 1 < d <k be
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maximal with respect to the property that some z; mp has nonzero
image Zjmp in My/My_1. Let .1 be one such nonzero element in
M (A)/[N] occurring in the decomposition (1). Then since zapc is
a linear combination of elements of weight greater than or equal to u
we have My/My_1 = L(y') for some g’ > u. Moreover u € U(u_ )M,
by the maximality of d and u & U(u_)My_; since U(Mpn(A))/[N] is
a free U(u-)-module (Remark 3.2). Hence u has nonzero image @
in the quotient U(My/My-1) = U(u-) ® My/My_;. By Proposition
4.5, U(@)unU(Myq/M4-1)r-p # 0 for some B € Q4 (m). But this im-
plies that (N/[N])x—g = (N/N')r-p # 0 for some § € Q(m) which
contradicts the fact that Ny_g = [N],_g for all 8 € Q4 (m). O

THEOREM 5.2. Let A\, € b*. If X(c) # 0 and p(c) # 0 then
[M(A) 2 L(p)] = [Me(A) = Le(p)]-

Proof. Lemma, 2.2 and Theorem 4.6 proves that a local composi-
tion series exists for Verma modules M(X) with A satisfying A(c) # 0
(in particular a local composition series for Mp()A) induces a local
composition series for M(A).) From the previous lemma we see
that every irreducible subquotient of M(}) is isomorphic to U(F)
for some irreducible th-subquotient F' of Mp(A) and any local com-
position series for M()\) comes from a local composition series of
Mn()). Consequently the multiplicity [M () : L()] is independent
of local composition series used and Proposition 2.3 gives us the
multiplicity of irreducible subquotients in such a series. O

COROLLARY 5.3. Let A,p € b*. If AM(c) # 0 and p(c) # 0, then
the map ¢ v @ := ¢|uy(») defines an isomorphism of vector spaces

(1) : Homg(M(X), M(x)) — Homg(Me(A), Me(4)).

Proof. Since ¢ is an g-module map, the map ¢ := Bl Ma(n) :
My,(A) — M(p) is an m-module homomorphism. Now if vy de-
notes the highest weight vector of M (), then ¢(vy) € Vaca, M(p)
so by Proposition 4.5, ¢(v4) € Mu(p). Thus ¢ has image in My ()
and we have ¢ : Mu(A) — Mu(p). By Proposition 4.5 ¢ is not zero
if ¢ is not zero. Consequently the map

: Homg(M(X), M(p)) — Homaun(Mn(A), Mu(p)).
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is injective. Using the universal mapping property of Verma mod-
ules the reader can check that ™ is also surjective. This map com-
bined with the one in Proposition 2.3 gives the isomorphism (1)
above. O

6. Index of Notation . .
1.1 ZRC) ga n'—a ba n'-i-a Aa H7 A+7 T, LA(g)v c, d7 X’ AX, Afa f-)v
bXa bX, mi,, an, mi(a ﬁlX, ui(a u:)t(a B:)t(a EX) ni(a b);t(a pfa

1.2 A%, AL(fX), Ar(w¥), QF, Qp(m), A <Xy, @,

1.3 Vy, P(V), Dx(}), OX = 0X(§), OX (), OX(k), M™, rad P,
1.4 U(L), MX(X), M (N), M{E(N), LX), LT (A), U(N),

1.5 LX),

2.0 (b,ﬁ1+, Q+(m)a0|ﬁ1)7 (b7%+a Q+(m)a0|§)7 O(g7T)a MT(/\)a LT()‘)a
¢, VacV, L = L%,

2.1 M(k),
2.2 [M : Ly(p)],

3.0 a(m) = ¢ ® ", 5, BU(-), Ulu_ ), B(u-), B(us),
4.3 Ymaxs Tmax,
4.4 J+(Z7 ?7), J0(27g)7 J_.(Z,g), €55

4.5 Jma.x = Jmax(z) = J—(Zagrnax)a

5.0 [N], [M : L(w)]
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