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VERMA MODULES INDUCED FROM NONSTANDARD BOREL

SUBALGEBRAS

BEN COX

In this paper we study composition series and em-
beddings of Verma modules induced from "nonstandard"
Borel subalgebras. This article can be viewed as a gener-
alization of Futorny's work on imaginary Verma modules
for Λ\ ' where the center of the Kac-Moody algebra acts
nontrivially.

Introduct ion. Let A be an indecomposable symmetrizable gen-
eralized Cartan matrix, fl(A) = n_ © f) 0 n+ the triangular decom-
position of the Kac-Moody algebra g(A) and W the Weyl group
for g(A). The "standard" Borel subalgebra b+ and its opposite fa-
are defined to be b± = f) 0 n±. For affine Kac-Moody algebras, H.
Jakobsen and V. Kac and independently V. Futornyi have found
an explicit description of a set of representatives of the conjugacy
classes of Borel subalgebras (see 1.1) under the action of W x {±1}.
We will call all Borel subalgebras not conjugate to b+ or 6_, "non-
standard" Borel subalgebras. In particular for each subset X of
the set of simple roots Π for g(A), one can construct a nonstandard
Borel subalgebra b+ and then for each λ 6 ή * one can use induction
to obtain what we will call a "nonstandard" Verma module Mx (λ).
For example if X = Π then b+ is the standard Borel subalgebra
and M(λ) is the "standard" Verma module. At the other extreme
X = 0 one obtains the "natural" Borel subalgebra and what one
might call a "natural" Verma module. A striking difference between
Verma modules induced from a standard Borel and those induced
from b+ for X C Π, is that these new nonstandard Verma modules
have infinite dimensional weight spaces. Consequently many of the
classical techniques used in the study of the composition series of
standard Verma modules do not seem to apply to this new setting.

269



270 BEN COX

The purpose of this article is to describe, in the case that the cen-
ter of g(A) acts nontrivially, the composition series and embeddings
of Verma modules induced from "nonstandard" Borel subalgebras.
More precisely the main results appear as Theorem 5.2 and Corol-
lary 5.3 where they assert the following: The multiplicity of irre-
ducible modules in a local composition series for a Verma module,
M(λ), induced by a nonstandard Borel subalgebra b+ (see 1.1) is the
same as the multiplicity of irreducibles in a local composition series
for a Verma module, Me(λ), induced by a standard Borel subalge-
bra 6+ C b+. Moreover there exists an isomorphism of vector spaces
Hom έ(M(λ),M(μ)) £ Hom§(Me(λ),Me(μ)) for μ € ff. Unexpect-
edly the representation theory of infinite dimensional Heisenberg
algebras plays an important role in the proof of these results (see
the proofs of 2.3, and 4.5).

This paper can be viewed as an extension of work done in [4]
where Futorny studied composition series and embeddings of Verma
modules for g(A) = A\ . See also [1] and [2] for work related to
natural Verma modules.

The author would like to thank Thomas J. Enright for many
helpful suggestions that improved the exposition of this article and
also Nolan Wallach for simplifying the proof of Lemma 4.2.

1. Notation.
1.1. For any relation R on the set of integers and c an integer we
set ΊJRC = {a £ Z| aRc}. For example Z>o is just the set of positive
integers. Let g be a simple finite dimensional Lie algebra over C,
f) a Cartan subalgebra of g, Δ its root system with respect to f),
and Π a set of simple roots and Δ+ (resp. Δ_) the set of positive
(resp. negative) roots determined by Π. Let ή± := θα 6^±0c* so that
g = n_ © ί) φ n+ is the triangular decomposition of g. For any Lie
algebra α, let L(a) = α ® C[ί, ί"1] be the loop algebra of α and let

g = L(g) © C c φ Q ί

be the associated nontwisted affine Kac-Moody algebra of g (see [8]
and [9] for more information about these algebras). We let

denote the Cartan subalgebra of g.
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Let δ be the indivisible positive imaginary root for g and let Δ =
{a + nδ I a G Δ, n G Z} be the set of roots of g. As in [7] we call a
subset Δ+ of Δ a set of positive roots if
(1) If α, β G Δ+ and a + β G Δ, then a + β <E Δ+.

(2) If α G Δ, then either α G Δ+ or — α G Δ + .

(3) If α G Δ+, then - α ^ Δ+.
(See 1.2 for some examples of sets of positive roots.) A subalgebra
b of g is a Borel subalgebra if

for some set of positive of roots Δ+.
We now introduce some subalgebras of g. Let X C Π, Ax the

subroot system generated by X and Δ^ = Ax ΠΔ±. X determines
a reductive subalgebra rπ of g:

m = mx = m_ φ f) 0 m+

where m± — Θα€^χgα X also determines a nilradical

U± = U = ® β

Consequently the decomposition of g = ύ_ 0 rh 0 ύ+ induces a
decomposition of g;

g = u_ 0 m 0 u+

where

m = rhx = L(m) 0 Cc 0 Cd and u± = ux = L(iι±).

We also set
| 1 ] ^ 1 ) 0 m±,

so that
m x = xnx 0 ή 0 m j .

Since m is reductive we have rh = ϊ)x 0 k where k is semisimple
and i)x := {/ι G f)|α(Λ) = 0 for alia G Ax} is the center of rh.
Moreover

t = e x = m_ 0 f)χ
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where \)χ = ])Γ] [gα,g_α]. From 6 we can also construct the affine
α€Δ£

Kac-Moody algebra

and define

t± = ( ί ® C [ t ± 1 ] ί = t l ) θ m ± .

The difference between t and m is that m contains t)x

whereas I does not. To sum it up we have defined three algebras,
i C tn C 0 and our goal is to relate certain composition series of
Verma type modules for g to those for I. In order to introduce these
modules we now define the chosen Borel subalgebra for g. Set

n± = nξ = mj θ uj, b± = b£ = Sj 0 nf, p± = pf = m x φ uf.

One can check that b± is a Borel subalgebra of g (see 1.2 below for
the appropriate set of positive roots).

Observe that since [tή x,ύ£] C ύ£, we have

[bξ,uξ] C υξ and [mx,uf ] C u£.

Note also
• If X = 0, then m x = ^, ύ ^ = ή±, and b + = b n a t is the natural
Borel subalgebra of g (see [7]).
• If X = Π, then m x = g, ύ± = 0 and b+ = b^ is the standard
Borel subalgebra.

1.2. The representation theory of Verma modules induced from
the standard Borel subalgebra has been well examined by other
authors (see [8], and [9] and their references). In this article we
will relate the representation theory of Verma modules constructed
from b+ for X φ Π (in particular t)x φ 0 and ύ^ φ 0) with Verma
modules for standard Borel subalgebras. This study will include
the representations induced from the natural Borel subalgebra as a
special case and consequently can be viewed as a generalization of
Furtony's work [4] where the case g = ^ ( C ) is analyzed.

Define

Δ j = {a + nδ\a € Δ+\ΛJ, n G Z}

U{a + nδ\a G Ax U {0}, n G Z>0} U AJ.
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Δ ± ( m x ) = Λ£ U {a + nδ\ a G Ax U {0}, ±n G Z > 0 }

and
Δ(u±) = Δ ± ( u x ) = {a + nδ\a G Δ ± \ Δ X , n G Z}.

Every positive set of roots of Δ is W x {±1} conjugate to one of
the sets Δ+ where W is the Weyl group for g (see [7], the action
of {±1} is on δ). Let Qx (resp. Q+(m)) denote the monoid in ff
generated by Δ+ (resp. Δ+(m x ) ) . Define λ <x μ'ήμ—λ G Q+. Let
Q (respectively Q+, Q+(m)) denote the root lattice of Δ (monoid
generated by Δ+, Δ+ respectively).

1.3. For V a g-module and λ G Sj% let Vλ := {υ G V\ hv =
λ(h)v for all h G iθ} be the A-ίΛ weight space of V. Let P(V) =
{λ G ff\ V\ φ 0} be the set of weights of V and define jDχ(λ) =
{μefi*\μ<x A}. The category O x = 0*(£|) is defined as follows.
Objects of Ox are 5>diagonalizable g-modules such that there exists
a finite number of elements λ i , . . . , λs G $)* with

c

and dimVλ is a t most countable. If A and B are objects in Ox

then the set of morphisms from A to 5 is the set of all g-module
homomorphisms. Note that all subquotients, direct sums and tensor
products of a finite number of modules in Όx are in Ox. We define
the categories Ox(m) and Ox{ϊ) in an analogous manner except we
replace Qx in the definition of <x by Qx(vh) and we require that
dim Vx < oo for all A G ft* and all modules V in Ox(m) and Ox(t).
For M G Ox and n G C define M^ = {m G M|cί.m = nm}\ then
since M is i>diagonalizable, we have M = φ n 6 cΛ^ n ^

1.4. We will now construct some objects in Όx. For L a Lie algebra
over C, let U(L) denote the universal enveloping algebra of L. For
λ 6 ή * define

where Cλ is the obvious one dimensional bx-module. This is the
(nonstandard) Verma module for the nonstandard Borel bx. We
can view Cλ as an nv£ © ί>module by restriction and then define
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and

From the standard theory of Verma modules one knows that ^ ( )
and M*(\) have unique irreducible quotients which we denote by
L*(\) and L*(\) respectively. Finally if N is an mx-module then
we can make it into a p+-module by letting u+ act by zero. Inducing
up to g we obtain

U(N) := U(g) ®u{px} TV.

In the case that TV is irreducible we will call U(N) a generalized
Verma module for g.

From now on we fix X C Π and we will often drop X from the
notation above except where it might cause some confusion.

Let P be a module for a Lie algebra α. The intersection of all
maximal submodules of P is the radical of P and is denoted by
r a d α P . The proof of the following result is straightforward and is
left to the reader.

PROPOSITION 1.5. For A £ ft*", one has for any m-module
subquotient F of Mm(λ)
(1) U(F) = ®μ<χU(F)β,

(2) there exists an epimorphism M(λ) —> N(X) where N(λ) =

U(F(λ)) and F(λ) is the irreducible quotient of Mm(λ),

(3)

d i m F μ if μ£\

(4) radN(X) is the unique maximal submodule of N(\).

Using (4) above one sees that M(λ) has a unique irreducible quo-
tient which we denote by L(\).

2. Lie algebras with triangular decomposition, contragre-
dient Lie algebras and their representation theory. In this
section we consider the structure of m, I and their representation
theory. More precisely we describe composition series and embed-
dings of Verma modules for m in terms of composition series and
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embeddings of Verma modules for δ. The relevant references for this
section are [5] and [9].

A triangular decomposition of a Lie algebra g consists of the fol-
lowing data: three subalgebras f), g_ and g+, an involutive anti-
automorphism σ of g and a free additive semigroup Q+ C f)* satis-
fying
(1) g = g_φf)Θg+,

(2) g+ φ 0 and g+ = Θα€Q+β+α w h e r e Q+a = ix € fl+l [ M ] =
α(Λ)^for all ft G f)},

(3) σ(g+) = g_ and σ|6 = If, and

(4) there exists a basis {&j}jej of (5+ consisting of linearly inde-
pendent elements of f)*.

A Lie algebra g with triangular decomposition is called regular pro-
vided dimgΛ < oo for all a G Q+ If σ : g —> g is the Cheval-
ley involution of g and if I is simple then it is straight forward to
check that (t)^m+,Q+(m)^σ\^) and (ίj,ϊ+,Q+(τn),σ|j) are Lie alge-
bras with regular triangular decomposition.

A Lie algebra g with triangular decomposition (f),g+,ζ)+>CΓ) is
contragredient provided the following is satisfied:
(5) dimgα t = 1 for all j G </,

(6) the elements of QQJ, Q-aj, j G J and \) generate g,

(7) for all j G J, gaj Θ [g^0-αj Θ 0-^ is isomorphic to sl2(C) as
an algebra and

(8) the sum ^[flαjβ-αj is a direct sum.

For example if t is a simple Lie algebra then l i s a contragredient Lie
algebra with respect to (f), ϊ+, Q+(m), σ|j), while m, with respect to
(f),m_|_,(5+(m)5σlτh)? is not if X C Π ((6) above is not satisfied).

The category 0(g, Γ) for a Lie algebra g with triangular decom-
position T = ( ,̂g.f, Q+,0") is the category of all g-modules M such
that M is ί)-semisimple, the weights of M all lie in a finite union
of fans D(\) = {μ G ^*|μ G λ — Q+}, and dimMλ is finite for
all λ G f)*. As usual the set of morphisms between two objects
in this category is the set of all g-module maps between these ob-
jects. Note that in if k is simple and T = (f),ϊ+,Q+(m),σ| |) or
T = (ί),m+,Q+(m),σU) we have 0(g,Γ) - Ox(t) and (9(g,Γ) =

x ) respectively.
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Following [5] we say a Lie algebra [ is a Heisenberg Lie algebra if

Cent I = [[, I] - Cz for some z e l

For the rest of this section we will assume k G C and [ is a Z-
graded Heisenberg Lie algebra with dimln < oo for all n G Z. Set
I± = Θn>ot±n and b{ = [+ 0 Gz. For k G C let C* = Cw denote the
one dimensional bj-module with l+w = 0 and zw = &w. One says
that a Z-graded [-module V satisfies property C& if (i) z.v — kv for
all v G V and (ii) there exists N G Z such that K = 0 for n > N.
Let Vacι+y = {v G V| ί+.v = 0} denote the vacuum space of V'.

If X ^ Π then we define

L = LX := (C[t]t ® l)x) 0 Cc φ ( C f r ^ r 1 ® f)x).

Z/ is a Heisenberg algebra with a Z-grading determined by ί. As for
[ in the previous paragraph, L determines two subalgebras L+ and

We will later need the following result on Z-graded I-modules V.

THEOREM 2.1. ([5], Theorem 1.7.3) Let k G C\{0}. Every l-
module satisfying condition €k is completely reducible and in par-
ticular is a direct sum of copies of M(k) := U(t) ®u(bι) Qfe More
precisely ifV satisfies condition (t^, then the linear map

given by u®υ —* u v is an [-module isomorphism.

REMARK. From the theorem we see that if V satisfies (£& with
k φ 0 then V is free as a [/(L)-module.

We will also need the following useful result.

PROPOSITION 2.2. ([3],[9], Chapter 2). Let M G Ox(m) andξ G

f)*. Then there exists a sequence 0 = Mo C M\ C * C Mk = M of
modules in Ox(m) and a subset Id {1, . . . , k} such that

(1) if i e I then Mi/M^i = im(ίi) for some ξi > ξ (partially
ordered with respect to Q+),

(2) ifi i I then { M i l M i . ι ) μ = 0 for all μ>ξ.



VERMA MODULES 277

Such a sequence of submodules of M is called a local composition
series of M at ξ. The irreducible factors Mt /M, -i = ^a(ίi) (where
ά = m or ά = I) occurring in (i) with & > £ are called proper, all
others are extraneous. Let μ 6 ff. The multiplicity of L&(μ) in M is
the number of proper factors of type L&(μ) in any local composition
series of M at μ and is denoted by [M : L^(μ)]. (This notion is well
defined: [9], Chapter 2.)

PROPOSITION 2.3. Let λ,μ e (f. //λ(c) ^ 0

[Mm(λ) : Lm(μ)} = [Me(λ) :

map </zven by φ *-* φ := φ\Mt(λ) defines an isomorphism of
vector spaces

Proof. For any λ G ή * we will view Me(λ) C Mm(λ) in the obvious
manner. First suppose λ(c) ^ 0 and that 0 = Mo C Mi C
Λ/fc = Λf̂ (λ) is a local composition series at 7/ for the f-module
Mt(λ). Define ~M{ = f/(m)M, C Mm(λ). Since [£+,§-] = 0 one has
Έi = [/(L_)f/(i)[/(L+)M, = U{L.)Mi and thus if we let £+ act
trivially on Mt /Mt -i then the universal mapping property of the
tensor product implies

M, /Mi_i s £/(m)

as m-modules. If (Mt /Mt _i)μ = 0 for μ > 7/ then (Mi/Mi-i) μ =
0 since P(M,/M t _i) C P(Mi/M t_i) - Z>0£. We claim that if
Mt-/Mt -i S Ze(μί), Jhen Ήi/Ή^ S Zm(μ t ). Certainly Lm(μ t )
is a quotient of MifM{^\. Let 0 / w £
weight vector. Then we can write

where {tί/}/^/ and {^J}JGJ are basis elements of weight vectors for
Ό{LJ) and Lt(μ%) respectively and αy G C. Among all indices
(/,j) with Qίij φ 0 let (α, 6) be such that t>& has minimal weight
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(there may be many such pairs of indices). Let υμi be a nonzero
highest weight vector in Lt(μi) and suppose v\> has weight μt — ξ
and 0 φ ξ G Q+(m). Since αα& φ 0 and the Vj are linearly in-
dependent one has ^ <XajVj φ 0 where J ' is the set of indices

jeJ'

j with Vj G Lt(μi)μi-ξ. Now Lt(μi) is irreducible, so there ex-

ists w G U(ϊ)ξ with w(]ζααjVj) = vμ i. The fact that Vb has

minimal weight implies that WVJ — 0 for j £ J ' with α/j έ̂ 0.

Thus w(^2 θίajVj) — 0 and [§,£-] = 0 implies that wu =

(Σ/aijwvj)] = (Σβιuι) ® ϋμi where ^ α = 1 and βι G C. Since
i i

U(L-)®Cvμt is irreducible as an L-module (Theorem 2.1) one must
have that U(m)u = U(m) ®^(§Θ^ \ Lt(μi). This proves the claim.
Observe that we have also proven that if F is an irreducible sub-
quotient of Mm(X) then F = U(m) Θu^φL^ Lt(μ) for some μ G ij*.

Let now 0 φ u G Vace+Me(/x), then since [£+,!_] = 0 we have
that u G Vacm +Mm(μ). If υ G Vacm+Mm(μ) one has

where {uι} is as in the preceding paragraph and {VJ} is a ba-

sis of Mt(μ). Since [L+,ί_] = 0 and υ G Vacm +Mm(μ) we have

that [L+,Σ,aijui\ — 0 f° r a ^ i Using Theorem 2.1 we have
i

Ύ^aijUi G C for all j i.e. u = Y^βjVj for some /?j G C. Thus

Vace+Me(μ) = Vacm +Mm(μ). Using this fact, together with the uni-
versal mapping property of Verma modules, the reader can deduce
that the map φ ι—> Φ\M{(\) is & bijection from HomTγl(Mm(λ), Mm(μ))
toHom§(M e(λ),M e(μ)). D

3. A basis for U(L(g)).
3.1. Let p be the rank of g and let C = {yα, Λ^|α G Δ, 1 < k < p}
be a Chevalley basis of g. Let {x j }^ m + c C b e a basis of m+ and
{%j}jl-diτnm C C be a basis of rπ_. Here we assume that
(1) iί Xi £ Qβt and Xj G Qβ3 with βi < β^ then i < j and
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(2) if Xi G Sift, then x_{ G 0-ft.

In addition we define X{ < Xj if i < j. Let {yj}jj^u* C C (resp

{ϊ/jlji-dimύ C C) be a basis of root vectors of ύ+ (resp. ύ*)

satisfying (1) and (2) above. We also define yi < yj if i < j. If

z% G 0α is a Chevalley basis element, let {2t ,ά t ,2_t } be the s/2(C)

triple determined by zt . Finally we totally order the Chevalley basis

C b y

yj < xg < hi < hj < Xk <yι

if — dim iι+ < / < —1, — dimrh+ < g < — 1, 1 < i < j < p,

1 < k < dimτπ+ and 1 < / < dimύ + . Note that this is a total

ordering on C and is compatible with the usual partial ordering on

g induced by the positive roots of Δ.

Next we will order a basis of L(g) using (1) and (2) above. Set

x(m) - x ® tm

for x E g and m G Z. L(g) has a basis B(L(g)) := {x(m)\x G

C, m G Z} which we totally order by defining

(3) x(m) < y(n)

if either (1) m < n or (2) m = n and x < y. (Note that if x(m) G

L(g)a and y(n) G L(g)β with a < β and x and y are in C, then

x(m) < y(n).) In particular u_ has a basis

£(u_) = B(L(g)) Π u_ = {y, (m)| 1 < - i < dimύ+, m G Z}.

In fact, if α is any subalgebra of £(fl), then we define

B(a) = 5(I(g)) n α.

In the following we will use the multi-index notation a = ( α i , . . . , ar)

for α2- G Z. If r > 1 and (i,m,p) = (zΊ,... , i n m i , . . . , m r , p i , . . . ,p r) G

Z 3 r , then set ^ = Z'ljin^p = ^ ( m i ) p " 1 Zir(mr)
Pr. We will use the

convention

£ = Z i ^ p = Zi1(mιjp~~ι - - - Zir(mr)
Pr = 0 if pi < 0 for some z and

Z = ^i,m,p = ^ i i ( ^ l ) P " f * * * Zir(
mr)Pr = 1 if />; = 0 for all Z.

Now define

^ = ̂ ( m j f ^(m;)"'- 1 zlr(mrγ
r
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for 1 < j < r. For 1 < j < ξ < r define

1 • • • zir{mτ)»

In other words z& is essentially just z where we've decreased the
exponents pξ and pj by one.

By the Poincare-Birkhoff-Witt Theorem U(u-) has a basis

B(U(u-)) := {yi^P = y^Arnlγ-^'''y^r(mrr\y^J{rn3)

< ytj+1(mJ+1)yij(mJ) £ B(u.)} U {1}.

If / £ U(u-) is a polynomial in reduced words from J3(ί/(u_)) then
we define the degree of / to be the maximum length of any word
appearing in / and let C/(u_)(p) be the set of polynomials of degree
p or less. Thus if y = yi 1(mi)p" t •• yir(mr)

Pr then degy = Et Pi-
Define also E7(u-)(p) = 0 for p < 0. We totally order the words in
B(U(ιi-.)) by degree and then among words of equal degree we order
reverse lexicographically. Moreover if w = μ£i,m,p &nd v = £j/a,b,c
with î,m,p < !/a,b,c a ^d μ,<̂  £ C\{θ}, then we also write υ; < ?;. For
example y_5(7) '< y_2(3)2t/_1(4)3 < y_2(3)y_i(5)4.

REMARK 3.2. Suppose t is a Lie algebra over C and α C t is a
subalgebra with basis {yι}ieL- Let {zjjjeJ be a basis complementary
to {?//}*€£ 0 e {yι}ieL U {^j}jeJ is a basis of t) with J totally
ordered by a relation < j . Then it is well known (see [HS]) that
U(t) is a free right [/(α)-module with f/(α)-basis {z™1 - - z™k

k \ m3 e
Z > 0 and ji <j ji+ι} U {1}. This in particular implies that if
zhl --Z7k

ka = Γ̂/ ' < r f l / w i t h î <J ••• <J ίr, rii e Z > 0 , then
m t = n2 , ji = /z for all i and α = a'.

In addition if F is an m-module with basis {zj}j£j then by the
Poincare-Birkhoff-Witt theorem

has a basis consisting of vectors of the form y^ (mι)p~ι yir (mr)
PrXj.

We order this basis lexicographically by declaring j/i,m,p^A: < ϊ/a,b,c#/
if either t/i,m,p < j/a,b,c or if j/i,m,p = j/a,b,c but k < L In addition
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we will later use the fact that U(F) is a free f/(u_)-module with
C/(u_)-basis {xj}jej

Finally if

u = Σ uίm,Pyim,PXj

then we let

LinSp (u) = Span {ίfi,m,PZj| u£ m > p 7̂  0}

be the span over C of the basis elements yi,m}PXj occuring in the
decomposition of u above that have nonzero coefficients.

4. An irreducibility criterion for subquotients of M(λ).
4.1. In this section we will assume that λ(c) φ 0 and F is an
m-subquotient of Mm(λ). The main result in this section is an irre-
ducibility criterion for

U(F) := U(a) ®u(rn) F (see 4.6).

There are a couple of technical lemmas that will be used throughout
the case by case proof of this result and it is best to get them out
the way before diving into the analysis.

Nolan Wallach kindly provided the author with a nice proof of
the first technical result:

LEMMA 4.2. If ot G Δ(ύ_) is a nonsimple root and y G Q-a is
nonzero, then there exists z G l?(fl+) such that 0 φ [z,y] G ύ_.

Proof. Recall that we always assume X φ Π so that Δ + \ Δ X φ 0.
Set p = rankg. We will prove this result by induction on p. If p = 1,
then X = 0 and the result follows.

Suppose now p > 1. Let {α, }f=1 = Π be Dynkin's enumeration of
the set of simple roots in Δ + (see [8]) and let n t G Z be nonnegative

p

integers such that a = ])P —nidi. Recall that the support of α,
2 = 1

denoted by supp (α), is the set of all indices i such that n t ^ 0. If
|supp (α)| < p then we have that a lies in a subalgebra of Q that is of
smaller rank and by induction the result follows. Consequently we
may assume that |supp (α)| = p so that n t > 0 for all 1 < i < p. Let
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( , ) be the Killing form on f)* and for any β G Δ, let β = 2β/(β, β)
denote its coroot.

We first consider the case that njt > 1 for some 1 < k < p. Here
p

g cannot be of type A\ as the longest root of A\ is of the form ^ α t

and thus Π{ = 1 for all i. Suppose that (α,ά t ) > 0 for all indices i
such that Πi > 1. We will prove by induction on p that this is not
possible. Consider the equality

2 = (α,ά) = - Σ
i:nt>l i:nt=l

If (α t , ά) > 0 for all indices i with nt• = 1, then we obtain a contra-
diction. Hence there exists an index j with Πj = 1 and (α,άj) < 0.
Then

so that

(this is nonzero as the node j is connected to at least one other
node). Since nz > 0 for all i this implies (a,άj) = —1 and if k
is such that Πk > 2 then (ctk,dij) = 0. Consequently a + aj is a
negative root and |supp (α + aj)\ = |supp(αj)| — 1 since Πj = 1.
Now induction on p implies that there exists a k with rtk > 2 such
that α + αj + αyt is a negative root.

The calculation

(α + ct3 + ak, ά3) = (α, ά,) + 2 + (αfc, ά3) = - 1 + 2 = 1

(recall (α/, άj) = 0 for / with n\ > 1). Hence
is a negative root.

p

Now we have reduced to the case a — — ]£^α t . By considering

the Dynkin diagram of g one can deduce that there are at least
two indices zΊ φ %2 such that a + αZl and a + a.{2 are roots in Δ.
If θίiλ,a.i2 G Δ(ύ+), then we choose 0 φ z G (ύ+)α, and the result
follows as supp(α + α 2 l) contains an index j with aj G Δ(ύ+) so that
a + a^ G Δ(ύ_). If α t l G Δ + (m), then since suρp(α + α^) contains
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an index j with ctj G Δ(ύ+), there is a basis element z G (m+)Λt

with 0 φ [z,y] Gύ_. D

The second technical result will help consolidate later calcula-
tions. Before we state it though we need to introduce some more
notation: Suppose

y = yi^rriiY1 - - - yir(mr)
Pr , e G Z and z G g .

Define

Jc = Jc(z,y) = {l<j <r\0φ [yl3,z] G ύ + Θ m}

J_ = J_{z,y) = {l<j<r\0φ [yh,z] G ύ_}

Jί = Jί(z,y,e) = {j G J_|ϊ/ b (m,) > [z,y%J]{e + m,)}

Jl = JL(z,y,e) = {j G J-lyi^rrij) < [z,ytj](e + m3)}.

LEMMA 4.3. Suppose λ(c) φ 0 αrzc? F is a subquotient of Mm(Λ).
Lei x be a nonzero weight vector in F, z G 0 ; e G Z ; αrzrf y =
Vh^iY1 ''' yir(mr)Pr with degy > 1. If either (1) z G ύ+
e <C 0 or (2) e^> 0 and z G m + ; ί/ien

Σ
lUJc)\{r}ξ=j+l

+ Σ Φi3Λ
z^Me + 2mi)yiii mod

where
*/ jeJ'uJL

and p = degy = ^

We use the convention x° = 1 in C/(fl) for any nonzero element
x G 0 and if an index set for some summation is empty, then we
take the summation to be zero.
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Proof. First observe that if e > 0 or e <C 0 then [[^(e), yi3(mj)\,
yiξ(mc)] a n ( l [z(e)iyij(mj)] a c * o n a n y element in U(F) by [[^,ytj],
yiξ](e + πij + rriξ) and [z, yi,)(e + rrij) respectively i.e no central term
appears. Moreover if either (1) or (2) above holds then z(e)x = 0.
Now the Lemma follows from the calculation below.

z\t)yx = / y ^ y^yTUij j/ t (^rijj
7 = 1 Qί=O

,v.~_

+ Σ

Σ

Σ

or=0

V1~x -.

α=0

•(e + m i),y ί j(m i)
P j" β" 1

V Λ r I / \ _ j _
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Σ

+ Σ Σ
Jc\{r}ξ=i+l

•(e + mj + πiξ)yjtχ mod C/(u_)(p_2)

D

4.4. If i*1 is an irreducible subquotient of Mm(λ), F is of the
form U(ra) Θm^x, ) F ' where i*1' is a subquotient of M^(λ) (see
the observation in the proof of Proposition 2.3). In particular
F is a free ί/(Z_)-module with a [/(!>_ )-basis of weight vectors
{wζ}ξ€z. Fix now a basis of U(L-) of weight vectors {vΊ}Ίer so
that B = {tλγiί̂ l ( 7 , 0 G Γ x Ξ} is a basis of F . Now the fact that
dimF μ < 00 for all μ 6 ή * and P(F) C A - Q+(m) implies that
one can enumerate the basis B by negative integers, say {xi}iez<Oi
so that
(1) each X{ is a weight vector of the form vΊWξ and

(2) if X{ has weight λ; and λ{ > λj, then i > j .
From now on we will assume that F is an m-subquotient of Mm(λ)
which has a basis {x{} that satisfies (1) and (2) above and we order
this basis by X{ < x$, if i < j . Note that Mm(λ) also has a basis
{xi} that satisfies (1) and (2).

Now suppose that z £ \)x and h (Ξ t)χ are both nonzero. Let / be
a finite subset of Z<o and {ms}ses & finite set of distinct integers.
Let e <C 0 and (j, r) £ / x 5 . If one writes Xj = vΊWξ and commutes
h(e + mr) past vΊ (if e <C 0 then no central terms appear) then one
can rewrite h(e + mr)xj in the form

where a^ 6 C. Then for e <C 0 and (z,θ) G / x 5, Remark 3.2 and
(1) above imply

(3) z(e + ms)xi £ Span {z(e + mr)xj, h(e + m r )# j |
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This is a key observation that we will use in the proof of

PROPOSITION 4.5. Suppose λ(c) φ 0 and F is a subquotient
of Mm(λ) having a basis {XJ} satisfying 4 4 (1) and (2). If β G
Q+\Q+(m) and radU(F)χ-β φ 0, then there exists a G Q+\Q+(rn)
and p G Z ŝ cΛ that radU(F)χ-β+a+pδ φ 0. More precisely if 0 φ
u G radU(F)χ-β φ 0 /or some /? G Q+\Q+(m), ί/iera ίftere exisis
Q. G Q+\Q+(riι), p G Z ; αrcd Y G (t/(n+)n+)α + p$ 5wcΛ ίΛαί Yu φ 0.

Proof. C/(u-) has a basis {j/i,m,p} as in section three so that
{s/i,m,p#j} forms a basis of U(F) that is lexicographically ordered
from the ordering induced from B(U(u-)) and {xj}jez<0- Recall
that C/(u_) is filtered by degree (see §3) and thus U(F) = C/(u_)®F
is also filtered by degree in £/(u_).

Let now 0 φ u G U(F)χ-β with /? G Q + \Q + (m). We have where
ϊ ί j m p G C. Let j/a,b,c#d be a basis vector that is maximal among
all terms with nonzero coefficients in u above. Set ymΆX — j/a,b,c
and £ m a x = xd. Certainly β G Q + \Q + (m) implies j/a>b,c φ 1, so
degj/max > 0.

Case J. J_(^,y) 7̂  0 for some 2 G ̂ (ύ-f) U B(m+) and some y with
maximal degree occurring in the decomposition of u above. Fix one
such z G B(ύ+) U J9(tτt+). Set

Max = {y = yi^rrn)* yiΓ{mτY
r\

y has maximal degree in u withJ_(z,j/) φ 0}.

Then Max is not empty by hypothesis. Among all monomials
y G Max consider their factors y2j and let ya>k be one in a root space
0α , where aa> is a minimal root among all such factors. In other

words aaf is a minimal element in

{&ij\ Vij ^ Qat ?
 a nd j / t j occurs as a factor in some y with y G Max}.

Let j/mjn = y&',b',c' G Max be a monomial that contains the factor

ya>k and define J^n = ^min(^) = «/-(*,ί/min) and J ^ n = Jc{z,yr^n).

Let j be an index such that ua,b,c, ^ 0 and set ά^n = Xj. We will

now reduce to the case that all monomials with maximal degree

have only factors y^ lying in a root space gati with α t l simple.
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By Lemma 4.3

^(e)ymin^min = JZ CλZ->VA(e + &j)ί/ίrinSmin mod

where c' = degϊ/min and either e <C 0 and 2: G #(ύ+) or e > 0
and z G B(m+). Let 5χ be the summation above. By Remark 3.2
the fact that Jnύn{z) φ 0 and e < 0 or e > 0, implies S\ φ 0. If
y = 2/i,m,p, x = ^j is a different monomial occurring in u then

pj[z,yi3}(e + m3)y3x mod C/(u_)(p_i) <g> F.
jeJ-

where p = deg ?/. Since 2/min̂ min has maximal degree for the mono-
mials in u we have p < c'. Let now Ti be the summation above.
In order for 7\ G LinSρan(5i) + Span (C/(u_)(p_i) ® F) one must
have p — d and by Remark 3.2, one also has C ^ Ϊ / J = C[z,j/α/],

m j — bf

h y^in = ϊ/' a n ( l ^ — ^min as e < 0 or e > 0. Conse-
quently j/πΰn = y and x = ^min which is a contradiction. Hence
Γi ^ LinSpan (5i) + Span ([/(ιt_)(p_i) ® F) .

Now our element z(e)u has the same degree d as u and z(e) sends

each monomial of maximum degree to a monomial that is of higher

weight with respect to the finite root lattice Q. Since there are only

finitely many nonzero weight spaces in g®c , after applying case (1)

to u finitely many times we arrive at

Case 2. J-{z,y) = 0 for all z G B{ix+) U J5(m+) and all y with
maximal degree occurring in the decomposition of u above: This
implies that if y — 2/i,m,p is a monomial in u of the same degree
as ym a x (recall j/max̂ max is the maximal element occurring in the
decomposition of w), then the summations with indices in J_(z,y)
in the formula 4.3 vanish. By Lemma 4.2 above we know that for
all such maximal degree monomials ΐ/i,m,p = 2/ή(^i)Pl * * * yir(

mr)Pr,
and for all the factors y^ G Q-αt , OL%2 G Δ ( U + ) are simple roots.
In particular this holds for ymΆX = yαi(bι)Cl - — yαs(bs)

C3. Then for
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e < 0 and 1 < / < s, one has by Lemma 4.3

aJ=al

3m*xh"l(bJ + Φ m a x Πlθd C/(u_)(c_2)

Let 5i, 52, and 5 3 denote the first, second, and third summation
respectively above. We will now consider, for a fixed /, 1 < / < s,
the summand

in the summation 53. Now hαι = z + h where 0 φ z 6 ί)x and
ft 6 f)χ. For e <C 0 the element w is thus nonzero by 4.4.(3). In
addition observation 4.4.(3) also implies that w is not in

LinSpan ί ^ cjyLaχhαt(bj + e)^ m a x ) + Span (t/(u_)(c_2)

Moreover tί; 0 LinSpan (Si) + LinSpan (52) + Span (t/(u_)(c_2) ® F)
as Si and 5 2 have factors yαj(2bj + e) or yαξ(bζ + bj + e) in them
with e <C 0 (use Remark 3.2).

On the other hand consider an index (i, m, p, j) φ (a, b, c, d) and
set y = j/i,m,p = yi^rriiY1 yir(mr)

Pr, x = xά. Then by Lemma 4.3
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we have for e <C 0 (so that Jr_ = 0)

y-aι(e)yx=
i€

+ Σ

r

Σ £i[^> b-αp yij

r

+ Σ Σ

•(e + mj + mξ)y3ξx mod C/(u_)(p_2) ® F

where p = degy and ej 6 Z. For 1 < i < 5, let Γt be the i-
th summation above. Our goal is to show that none of the w (£

5

) + Span(C/(u_)(p_1) ® F).

Suppose jp < c' — 1, then Γ2, Γ3, Γ4, Γ5 all have degree c; - 2 or
less so

5

w & Σ LinSpan (Γ2 ) + Span (C/(u_)(p_i) ® F ) .

But it; 0 LinSpan (Ti) + Span (C/(u_)(p_i) ® F) as e < 0. Thus

5

w & Σ LinSpan (Γ,) + Span (C/(u_)(p_i) ® F) .

Suppose now p = c'. Here j/i,m,p has maximal degree so each factor

yi3 of j/i,m,p must come from a root space of a simple root α^. T\ —

T4 = 0 by the hypothesis of Case 2 and thus tϋ 0 Σ LinSpan (Ti) +
t=l,4

Span (C/(u.)(p«i)® F ) . Since α t j is simple and so is o?αz we have that

[y-αpϊftj = Λαi or 0

depending on whether ij = α/ or not. Thus

[y ίJ [y-α,, J/tJ](e + rrij + rriζ) = aiξ(haι)yiξ(e + mά + mξ) or 0,
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accordingly. Hence for e <C 0 we have that

w £ Σ LinSpan (Ti) + Span (t/(u_)(l,_i) ® F)
1=1,3,4,5

This leaves us to study T2. Now in order for

5

w G Σ LinSpan (Γf) + Span(t/(u-)(p_i) ® F)
t = l

one must have by Remark 3.2 that

L a n d [y-αp yij(e + rπj)x = Λαi(e + bι)

Using the observation 4.4.(3) one has that xm a x = x and πij = 6/.
Thus yi3{mj) = yaι(bι) so that y = ymax. But this contradicts the
assumption (i, m,p,j) 7̂  (a, b, c,d).

D

THEOREM 4.6. If X(c) φ 0 ίήen C/(F) is irreducible if and only
if F is irreducible.

Proof Suppose F is a reducible subquotient of Mm(λ) i.e. there
exists a proper m-module TV of F. Then u+.iV = 0 when we view
N C U(F) and Nμ φ 0 for some μ G λ - Q+(m) so that Λ̂ ; :=
U(s)N = C/(u_)Λ̂  C f/(F) is a proper g-submodule. Hence U(F)
is reducible.

For the converse we assume that λ(c) 7̂  0 and ,F is irreducible.
First we claim that rad (U(F))χ-β = 0 for β G Q+(m). This is be-
cause (rad jϊ7(jF))λ-0 C F\-β for all irreducible subquotients F of
Mm(λ) and /? G Q+(m). Thus if F is irreducible and rad %U(F)\-β φ
0 for some β then radρ[/(F) contains a generator of F and hence
rad έt/(F) = U(F). Clearly this is nonsense. Now if rad(ί/(F))λ-/? /
0 for some 9̂ G Q+ we could use Proposition 4.5 inductively to ob-
tain a nonzero element in rad (U(F))\-β' for some β' G Q+(m) which
leads again to a contradiction. Finally from Proposition 1.5 we see
that rad U(F) = 0 i.e U(F) is irreducible. D
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5. Composition Series and Embeddings of Verma mod-
ules for λ(c) φ 0. In this section we restrict ourselves to the case
that λ(c) φ 0.

Let μ G Sy* and M be a module in Ox. As in section two, a
sequence 0 = MQ C M\ C C M^ = M of modules in Ox and a
subset /c{ l , . . . , fc } such that

(1) if i G /, then Mt /Mt _i = Lx{μι) for some μt > μ (partially
ordered with respect to Q+),

(2) if i'i I then (Λft /M t_i) λ = (0) for all λt > μ
is a local composition series at μ. If μι > μ, then we let [M : £(μ;)]
be the number of times that L(μ) appears in (1) above. Of course
this definition may depend on the sequence Mi C C Mk =
M above. Consider a countable direct sum of irreducible modules
ΦiezL(μ). This module is in the category Όx but it does not have
a local composition series at μ. So this notion is not well defined
for all modules in Ox. On the other hand, for M = M(λ) with
λ(c) φ 0 this number is well defined (see 5.2 below).

We will now essentially follow the argument of [4] Lemma 9.
For a g-submodule TV of M(λ) let [N] := N Π Mm(λ).

LEMMA 5.1. Every nonzero submodule N of M(λ) is generated
by [N] and [N]φO.

Proof We may assume that N is a proper submodule of M(λ).
If 0 φ u G -/V, then by Proposition 4.5 there exists a Y G f(β)
such that 0 φ Yu G radMm(λ). Hence [N] φ 0. Let TV' be the g-
submodule of N generated by [N] i.e. Nf = t/(u_)[7V] and suppose
that N' φ N. Then N/N' C M(λ)/C/(u_)[7V] £ [7(Mm(λ)/[7V]).
Let

(1) u = E yi,m,p î,m,p
where the j/i,m,p are basis vectors in E/(u_) as in section three and
where the Xi,m,P are elements of Mm(λ)/[iV]. If u φ 0 in N/N' then
£i,m,p 7̂  0 for some index (i, m, p) appearing in the decomposition of
u. Let μ G ϊ)* be such that each such nonzero #i,m,p is a linear com-
bination of weight vectors in Mm(X)/[N] of weight greater than or
equal to μ. Now consider a local composition series for Mm(X)/[N]
at μ: 0 = Mo C Mλ C C Mk = Mm(λ)/[7V]. Let 1 < d < k be
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maximal with respect to the property that some #ί,m,p has nonzero
image #i,m,p in Md/Md-i. Let xajb,c be one such nonzero element in
Mm(X)/[N] occurring in the decomposition (1). Then since #a,b,c is
a linear combination of elements of weight greater than or equal to μ
we have Md/Md-i — L(μf) for some μf > μ. Moreover u G U{u-)Md
by the maximality of d and u (j£ C/(u_)M^i since U(Mm(λ))/[N] is
a free C/(u_)-module (Remark 3.2). Hence u has nonzero image ΰ
in the quotient U(Md/Md-i) = U(u~) ® Md/Md-i By Proposition
4.5, U(S)ΰnU(Md/Md-i)\-β φ 0 for some β G Q+(m). But this im-
plies that (N/[N])χ-β = (N/Nf)χ.β φ 0 for some /? G Q+(m) which
contradicts the fact that Nχ~β = [-/V]A-/? for all β G Q+(m). D

THEOREM 5.2. Let \,μ e ίj*. //λ(c) ^ 0 αncί μ(c) Φ 0

[M(λ) : L(μ)] = [Me(λ) :

Proof. Lemma 2.2 and Theorem 4.6 proves that a local composi-
tion series exists for Verma modules M(λ) with λ satisfying λ(c) 7̂  0
(in particular a local composition series for Mm(λ) induces a local
composition series for M(λ).) From the previous lemma we see
that every irreducible subquotient of M(λ) is isomorphic to U(F)
for some irreducible m-subquotient F of Mm(λ) and any local com-
position series for M(λ) comes from a local composition series of
Mm(λ). Consequently the multiplicity [M(A) : X(μ)] is independent
of local composition series used and Proposition 2.3 gives us the
multiplicity of irreducible subquotients in such a series. D

COROLLARY 5.3. Let λ,μ G ί)*. Ifλ(c) φ 0 and μ(c) φ 0, then
the map φ *--> φ := ^|M{(A) defines an isomorphism of vector spaces
(I) : Hom έ(M(λ), M(μ)) -» Hom§(M t(λ),

Proof. Since <̂> is an g-module map, the map φ := ^>|Mm(λ) :

Mn(λ) —* M(μ) is an m-module homomorphism. Now if x;+ de-
notes the highest weight vector of M(λ), then ^(v+) G Vacn +M(μ)
so by Proposition 4.5, φ(v+) G Mm(μ). Thus φ has image in Mm(μ)
and we have <̂  : Mm(Λ) —> Mm(μ). By Proposition 4.5 φ is not zero
if φ is not zero. Consequently the map

: Hom έ(M(λ),M(μ)) -
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is injective. Using the universal mapping property of Verma mod-
ules the reader can check that" is also surjective. This map com-
bined with the one in Proposition 2.3 gives the isomorphism (1)
above. D

6. Index of Notation
1.1 Z f i c , g, n_, h, n+, A, Π, Δ+, TΓ, L(g), c, d, X, Ax, Ax, %,

, mx, mx, mf, mx, ΰξ, ux,

1.2 Δί , A±(mx), Δ ± (u x ), Qx, (?+(m), λ <x μ, Q,

1.3 Vλ, P(V), DX(X), Ox = Ox(g), Ox(m), Ox(t), M ^ , radP,

1.4 U(L), Mx(λ), Mx(λ), Mx(λ), Lx(λ), Lx(λ), U(N),

1.5 L(λ),

2.0 (^tn+.Q+ίtn),^^), ((),!+,Q+(m),σ|§), O(g,T), Mτ(λ), Lτ(\),
£k,Va,cV, L = LX,

2.1 M(k),

2.2 [M : Lτ(μ)},

3.0 x(m) = x®tm, yS, B(U(u.)), f/(u_)(p), S(u_), β(u+),

^•^ S/max? "^rnax?

4.4 J+(z,y), Jo(z,y), J-(z,y), th

4 . 5 J m a x = 'ΛnaxV^J ZI= *̂ — \^5 ί/maxj?

5.0 [iV], [M : L(μ)}.
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