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STRUCTURE OF THE NONSTANDARD

CATEGORY OF HIGHEST WEIGHT MODULES

BEN Cox*
Dedicated to A. J. Coleman on his seventy-fifth Birthday

ABSTRACT. In previous work of Futorny and Saifi, and independently the author, the structure
of Verma modules induced from “nonstandard” Borel subalgebras of an affine Kac-Moody
algebra g was analyzed. In this paper we define, for each highest weight ), a category OyX of
representations of g that contain these “nonstandard” Verma modules and we show that this
category is equivalent to the category O, (E) for a suitable infinite dimensional Lie subalgebra
tC d. When t is an affine Kac-Moody algebra, we also obtain a BGG type resolution and
BGG duality theorem in the setting of OAY

§0. Introduction:

In previous work of Futorny and Saifi, and independently the author, the structure of
Verma modules A~ ()) induced from nonstandard Borel subalgebras was analyzed. More
precisely the results can be described as follows: Let g denote a finite dimensional simple Lie
algebra over C, § the nontwisted affine Kac-Moody algebra associated to g, § the Cartan
subalgebra of § and A € $* (Futorny and Saifi in addition analyzed the setting of twisted
affine Kac-Moody algebras). Let ¢ denote a nonzero element in the center of § and suppose
Ale) #0. If IT is a set of simple roots of g, and X C II then one can construct from the
data X, a nonstandard Borel subalgebra b:}f and a Verma module M ¥ (1)) induced from b j}
and A. It was shown in [C] and [FS] that the multiplicity of irreducible subquotients in a

local composition series for A/ X()) is equal to the multiplicity of irreducible subquotients

*Part of this work was completed while the author was attending the 1992 Summer Workshop in Alge-
braic Representation Theory at the University of Washington. He would like to thank the organizers for

their hospitality and support.
1991 Mathematics Subject Classification. 17 B67.
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in a local composition series for a Verma module Mi(A) for some infinite dimensional Lie
subalgebra £ (it has a triangular decomposition given in 1.4). This suggests that there ;
might be an equivalence of categories lurking in the background (see [ES] Lemma 3.53). The

main purpose of this article is to define the appropriate categories O and O, (£) and show ‘
that they are equivalent. As a result of this equivalence, we obtain an analogue of a BGG *
type resolution and a BGG duality theorem when # (modulo a central ideal h¥X) is an affine

Kac-Moody algebra and A(c) # 0.

The author would like to thank Professor Viatcheslav Futorny for providing the author

with corrections to this article.

§1. Notation:

i

1.1 Let g be a simple finite dimensional Lie algebra over C, h) a Cartan subalgebra of a, A
its root system with respect to b, and II a set of simple roots and A (resp. A_) the set of
positive (resp. negative) roots determined by II. Let ti := Do fasothat g=n_shsny
is the triangular decomposition of g. For any Lie algebra a, let L(a) = a® C[¢,t™!] be the
loop algebra of a and let § = L(g) © Cc © Cd be the associated nontwisted affine Kac-
Moody algebra of g (see [K] and [MP] for more information about these algebras). We let
$ = b+ Cc + Cd denote the Cartan subalgebra of §.

Let 6 be the indivisible positive imaginary root for g and let A = {a+ndla€ A nez)

be the set of roots of §. A subset A4 of Ais called a set of positive roots if

(1) Ifa,;S‘EA+anda+,3€A,thena+ﬂEA+. |
(2) If @ € A, then either a € A} or —a € Ag. '
(3) fa €Ay, then —a ¢ Ay. .i
A subalgebra b of § is a Borel subalgebra if b = H @ (Daea,fa) for some set of positive |
roots Ay (see [JK] and [F)). | | [
We now inbroduce soue subalgebras of g. For the rest of this article we assume X ¢ I, ]v
AX the subroot system generated by X and Af = AX N AL. X determines a reductive

subalgebra mof g: m = m_@hHH . where my = @ae&;’éa' X also determines subalgebras




37

ug = Daeciy\ax o such that [z, m] C ux. Consequently the decomposition of g =
U_ & m e i, induces a decomposition of §: g =u_ ©mSu; wherem = L(m) & Cc s Cd
and uy = L(11x). We also set mgy = (m @ C[t*'J¢t*!) ® my. Since m is reductive we have
m = hX @ & where  is scmisimple and hY¥ := {h € hla(h) = 0 for alla € AXY is the
center of ™. Moreover £ = m_ @ hx @ my where hx = ZoeAf[gosg—a]- From ¢ we
can also construct the affine Kac-Moody algebra &€ = L(E) + Cc + Cd + h¥ and define
tx = (EQC[tT')tT ) omy. Set nx =mi Bus,br = HOnz, and pr = pr = MO uy. by is
a Borel subalgebra of §.

1.2, The subalgebra
L=L%Y:=X@Citt) s Cca (h* @ Clt™}]t™}).

of m is a Heisenberg algebra with a Z-grading determined by the degree of t. L determines

two subalgebras

Ly =bh¥ @ C[t]t

and

L.=4%aCt 1t

Set b, = L4 S Ccand for k € Clet C4 = Cw denote the one dimensional bz-module defined
by Liw = 0 and cw = kw. One says that a Z-graded L-module V satisfies property €, if
(i) c.v = kv for all v € V and (ii) there exists N € Z such that V, = 0 for n > N. Let
VIt = {v € V|l .v =0} denote the L-invariant subspace of V.

Let U(a) denote the universal enveloping algebra of a. Suppose k # 0. Then by [FL\],
Theorem 1.7.3 or [K] section 9.13, every L-module satisfying property &; is 1somorphic to
a direct sum of copies of U(L) ®@y(,) Ck. In addition if M satisfies property €4 then the
map

da : U(L) ®uby) ME+ S M

induced by u @ v — u - v is an isomorphism of L-modules.
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1.3 For any relation R on the set of integers and ¢ an integer we set Zg. = {a € Z|aRc}.

Define

A ={a+nla e ANAY, neZ}U{a+nbla e AXU{0},n € Zso) UAY  and

Ax(th) = A U {a+nélae AXU{0},£n € Z5o}.

Let Q= (resp. Q4(th)) denote the monoid in H* generated by AY (resp. Ay(m)). Define |

A<Xuif/,t-—/\€Q;§and)\<,h;1if,u—/\€Q+(ﬁ1). !
If the Coxeter-Dynkin diagram for X is connected then we let ITs, = X U {a4} denote ‘

the set of simple roots in A¥ for m where ay = —8 + 6 and 6 is the maximal root of AX

with respect to IIs. (In this case € is an affine Kac-Moody algebra.) We also let 3 denote

the coroot of 3 € 14,

1.4 For V' a g-module and A € H*, let Vi := {v|hv = A(h)v for all A € H} be the A-th
weight space of V. Let P(V) = {A € $*|V\ # 0} be the set of weights of V" and define
ALY = {ue 5 lu<¥ A} and AL Qu() = {n € 9*|p <a M).

For any Lie algebra a let a — mod denote the category of all left a-modules. For each
A€ $ welet O\(h) (resp. Ox(E)) denote full the subcategory of fa-mod (resp. ¢-mod)
whose objects M satisfy

(1) M= @ M,
£EALQ+ (W)

and

(2) dim M, <00 forall €€

Remark: If the Coxeter-Dynkin diagram for X is not connected then

S =(9,8,Q4(m),0ly)

is not a triangular decomposition of &. On the other hand if we let Q. denote the submonoid

generated by the standard set of positive roots A, then T = (£, t,, Q+,0l;) is a regular '

—
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triangular decomposition (see [C] §2 or [MP] Chapter 2). In this case O(£) is a subcategory
of the category O(£,T) and all of the results that we will use below for O,(£) follow from

corresponding results in [MP] and [RW].
For A € §* with A(c) # 0, let OX denote the full subcategory of -mod whose objects

M satisfy

(1) M= @feAlQ;’_‘ M.,

(2) M is generated as a §-module by Deerio, () Me, and

(3) ®5€A1Q+(ﬁ1) M¢ is a module in O)(m).
We call OY the nonstandard category O when X # II. (The condition A(c) # 0 is required
to ensure that subquotients of modules in Of are still in Of , see [F'2] for examples where

this does not occur.)

We define R : OF — Oy(th) by

RM)= € M for MeOf
EEA Q4 ()

and

R(f) = flra

for any f € Hom 4(M,N) in the category OF. R is exact since modules in Ox(th) are
$H-semisimple,

A key result that we will need later about the functor R is

Lemma. ([C], [FS]) Every nonzero submodule N of M(}) is generated by R(N).

1.5. For A € H* define M¥()\) = U(g) ®U(b;‘f)c>‘ where Cy is the usual one dimensional
bi-module. This is the (nonstandard) Verma module for the nonstandard Borel subalgebra
bs. Let L(X) = LX()) denote the unique irreducible quotient of M()X) = MX()). We can
view Cy as an my & $H-module or €4 & $H-module by restriction and then detine A pm(A) =
U() @u(m, &5 Cr and Me(A) = U(E) @ (e, 05 Cr- Let Lm(}) and Le(}) denote the
irreducible quotients of AM,(}) and AM(A) respectively. Finally if N is an fi-module then
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we can make it into a p4-module by letting uy act by zero. Inducing up to g we obtain
U(N) :=U(g) Quipy) V- Observe that U defines a functor Ox(fh) — OF. The main goal
of this paper is to show that U o R and R o U are both equivalent to identity functors and

hence define an equivalence of categories.

§2. Highest Weight Series and an Equivalence of Categories:

2.1 Let g be a complex Lie algebra, a a subalgebra of g and o : g — g a linear involutive

anti-automorphism (i.e. 02 = 14, and o([z,y]) = [0(y),o(z)] for all z,y € g) such that
a+o(a)=g.

Let A : a — C be a 1-dimensional representation of a. Following [JI] we say a representation
71 g — gl(V) is a highest weight representation of highest weight A (with respect to a) if

there exists a vector vy € V such that

7(U(g)va=V and

7m(z)vy = A(z)va for z€a

Let M be a g-module. A g-highest weight series (with respect to a) for M is an increasing

chain
(O) = A‘IQ C .‘V.[]_ C .'"12 C A
of submodules of A such that

(1) U, M; = Al and
(i) M;/M;_1 is a highest weight module (with respect to a) for all 7.

The following is a key result.

2.2 Proposition. (a). ([DGK], [GL], [MP] and [K\V]). Let M € O(g,T') where g 1s a Lie

algebra with triangular decomposition T. Then M has a highest weight series {M;} such if

M;/M;_, has highest weight \;, then X; > X; implies that ¢ < j.
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(b). Let M be a module in O and suppose that A(c) # 0. Then M has a highest weight
series {M;} where M, /M;_; is isomorphic to M(X;)/U(N;) for some .V; in Ox(m).

Proof. R(M)is a module in O(m) so by (a) R(M) has an m-highest weight series {Ni}2,.
Define M; = U(@)N;. Since P(M) C A Qf, we have that

Uup)ue N CUuu( @ Map) =0.
BEQ (M)

By the Poincaré-Birkhoff-Witt Theorem it now follows that M; = U(u-)u_N;. We thus
have a surjective §-module homomorphism ¢; : U(8) @y, ) Vi — M induced by u@n
un for u € U(d),n € N;. Since N;/N;_; is an m-highest weight module of highest weight

A; we have a surjective m-module map
(1) | Mu(Ai) = Ni/Ni-1.
If we let uy act by zero on Mgu();) then (1) induces a surjective g-module map
M) - U@ Q) (Vi/ Vi) = (U@ Q) N/ (U(8) X Nio1):
Ulpy) Ulp+) Ulp+)

Combining this with the canonical map induced by ¢; we obtain a surjective g-module map
M(X;) = M /M.

Thus M,/M;_; is a highest weight g-module of highest weight A;. Since R(M) generates
M as a g-module and R(M) = U2, N; we have M = UZ;A;. Now every submodule of
M();) is induced from a module in OF () i.e. it is of the form U(V) for some .V € 0% (m)

(Lemma 1.4), part (b) now follows. O

2.3 Theorem. For all A € H°, Mc) #0, U o R (resp. RoU) is natural equivalent to the

identity functor 1ox (resp. lo,(w))-

Proof. First consider N € Of(f). Viewing N C RoU(.V) we immediately obtain R o
U(N) = N.
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If M € OF, then M has a g-highest weight series {M;} with
.M,‘/Af,’__l = U(."\Im(A,‘)/JV,'_l)

for some th-module N;_; by Proposition 2.2. Thus for all : > 1 we have R(M;/M;_y) =
Ma(Xi)/Ni_; as -modules so that M;/M;_, =Uo R(M;/M;_,). A diagram chase shows

that we have a commutative diagram

0 — UoR(M;) — UoR(Mi1) — UoR(Miy1/M;) —— 0

l l !

0 —— .7\'{,‘ — .7\'1,'.{.1 —_— j\;’[,’ /.\1’1./,. 1 — 0

where the vertical maps are the canonical maps induced by the obvious inclusions and
projections. Lemma 1.4 implies that the left most vertical map is an isomorphism for i =1
and the right map is an isomorphism for all z. Thus the Five Lemma and induction on 2
implies that -

Uo R(JI,) = ,\f,'

for all . Using the Five Lemma and induction one can argue as above to make the identi-

fication R(JM;) = N, for all «. Thus

UoR(M)=U( @ Mx-p)=UUZ,N:)
BEQ4(m)

UM =M

since tensoring commutes with direct limits (see [R], Corollary 2.10). Let a7 denote the
composition of the maps above. Now we need to check that the isomorphisms {a7| M €
OF} deline a natural equivaleuce.

Suppose that M, N are two modules in OF and f € Hom (M,N). Then f(M—p) C
Ny—p for all B € Q4(r), so that R(f) € Hom a(R(M), R(N)). Since M is generated as a

_
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g-module by R(Af), we have that f is completely determined by R(f). Consequently the

diagram below is commutative:
UoR(M) - M
1®R(f)l fl
UoR(N) —" N.

Hence Uo R=1px.

Similarly if M’, N' are two modules in Ox(th) and g € Hom (A1’ N'), then
M' —Z— RoU(M")
gl R(1®9)1
N' —=— RoU(N')
is a commutative diagram where the horizontal maps are induced by inclusions and thus

Ro U is naturally equivalent to 1o, (m). U

We would now like to show Oy(m) and Ox(F) are equivalent categories. Since a(h) =0
for h € h¥ and @ € AY we have [€,L4] = 0. If M € Ox(fn), then this implies that M+ s
a t-submodule of M. Consequently the functor Inv : Ox(f) — O A(€) given by

Inv (M) =ME+ and Inv(f) = flyes

for M,N € Ox(f) and f € Hom m(M,N) is well-defined. We have another canonical
functor Ind : O(§) — Ox(h) givén by induction
Ind(N)=U(m) X N and Ind(f) =1 f
U(tsLy)

where N, N' € O,(8), f € Hom ¢(V, N') and L, acts by zero on V.
Suppose that V' € Ox(f). Then the Poincaré-Birkhoff-Witt theorem gives us an isomor-

N PO FUPREE DU RN
plxlblﬂ uf L_—lnu\_‘uhu;)

U(m) ® vi+ 2 U(L.) ® VI+ (see 1.2 for notation)
U(tSLy) U(br)
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which we can compose with the isomorphism ¢y given in section 1.2 to obtain an L_-module
isomorphism
by :Ind olnv (V) =U(h) Q) Vi -V
UGteLy)
In fact a straightforward computation shows this is the canonical m-module homomorphism
induced from u & v — wv. This isomorphism also shows us that V is generated by VI+ as

an m-module and thus

Ywo(Ind o Inv)(f) = fody

for any f € Hom (V,W) and W € Oa(f). Consequently Ind oInv = Io, (s)-
Conversely suppose that N € Ox(F). Then viewing N as a trivial Ly-submodule of
U(L) @b,y N we have
wr) Q NH+=N

U(br)
by 1.2. Since the U(ﬁl)@U(éeL”N = U(L) Qupy) Y a8 IL-modules we have that the

canonical inclusion .V C U(M) QuieL,) N (n+— 1@ n) induces an isomorphiém

Inv o Ind (N) = (U(fh) &) N_)L+ = (U(L)y K) V)t =N,

Ud=Ly) U(br)

Certainly Inv o Ind(f) = f for all f € Hom (N, P) with P € O,(B), and consequently we

have
2.4 Theorem. If A(c) # 0 then the categories OF, O5(h) and O(t) are all equivalent.

Proof. The above paragraphs prove that Ox(f) and O »(£) are equivalent and by Theorem
2.3 we have that O and O,(i) are equivalent. U '

§3. Consequences of the Equivalence of Categories:
318t Po={neQ(Mp+agN] (A} and

V= UE) @ UEe AW=UO @ VT,

a€P; U(t4+69)

' |
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where V & C, has the tensor product structure as an &} S $-module. Then Py(y) is a
projective module in O A(E) and it has a unique finitely generated indecomposable summand
Ii(p) such that Ly(p) is an irreducible quotient of Iy(u) (see [MP] Chapter 2, or [RW] §5
and §6). We let uy @ L4 act trivially on V, C,,, and I3(p) so that V @ C, and I;(u) become
by-modules. Set
PYu)=U(®) @ VT (W) =UE) &Q Lilw).
U(b4) U(b4)

A module M in OF is said to have aVerma composition series if there is a chain of sub-

modules
(3.2) O=MyCcMyC---CM, =M

such that M;.;/M; = M();) for some A; € A | Q;;,( . If M has a Verma composition series
then we let [M : M ())] denote the number of occurences of 1f(A) as a subquotient in the
composition series above. If € $* and M has a local composition series (defined as in
(K] or {\IP]) at n then we let [A : LX(u)] denote the number of occurences of L¥(y) in
this series for g > 7. We will see below that these numbers are independent of the series
defining them.

If ¢ (modulo the central ideal §X) is an affine Kac-Moody algebra then we will let 1
denote the Weyl group for £. Let ! denote the length function on 1V, and s the reflection
with respect to a real root 3 € A4(m). Let T'V.:j) denote the elements in 1V} of length j.

We write w « w' if w = sgw’ and {(w) = {(w') + 1. The usual Bruhat order on Wy is given

by w < w' if w = w' or if there exists wy,...,w, € Wj such that
et Y2 Yr-1 ]
W=W) =Wy = -+ — W, =W

for some real roots v; € Ay (). We also define the dot action of W} on H* by
w-p=1wlp+p:) — s

where p; € H* is any fixed element such that p@(ﬂ) = 1 for all 3 € II;. In addition let
PH(E) = {\ € H*|M\(a) > 0 for all @ € A4(4)} be the positive root lattice for g
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3.3 Proposition. Suppose A € H* with A(c) # 0.
(1) For p € A | Q4 () the modules PX(u) and I¥(u) are projective modules in oy.
Moreover IX(u) is indecomposable and LX(u) is the unique subquotient of IX(p).
(ii) PX(u) has a Verma module composition series and for allv € A | QX
X ) dim Va—, = dim Hom 4(P*(p), MXW)) ifv<ap<al
PXG ¥y = .

otherwise.

(iii) (BGG duality). Let M be an object in OF and p € A | Q+(n) then
(M : LX (1)) = dim Hom (I (1), M), and P¥(u) = @ m.()I*(»)
where m,(v) = dim Hom (P~ (u), L~ (v)). Moreover
(ALX(u) s LY ()] = [[¥(v) : MY ()]
(iv) Suppose t is an affine Kac-Moody algebra. Let u € PT(£), w,w' € W;. Then
dimHom 5(M¥(w - p), MY (w'-p))S1e  w'<w
& (M¥(w-p): L¥(w' - p)) #0.

(v) (Strong BGG resolution). Suppose & (modulo the central ideal h-¥) is an affine
Kac-Moody algebra. If w < w' and p € PH(&)N A | QF then by (iv) we can fix
inclusions

Tww M¥(w-p) = MX (W' p).

Set C; = @wewf“ M~(w - p). Note that Cy = M~ (u) so that there exists a
canonical projectj;n do : M~X(u) = L¥(p). For (wi,w2) € WG x WU there
exists c(wy,ws) € {—1,1} such if we define
, c(wy,we) Ifwy & wo
b o, = {

w,we - .
0 otherwise

and if d; : C; — Cj_, is given by d; = obl,

) walun,wp then the sequence

s O Oy e O Gy 2 LY () — 0

is exact (see [RW] 9.6 for a detailed description of c(wy, ws).

S
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Proof. The proof is a consequence of the equivalence of categories 2.3, Remark 1.4 together
with the following results from [MP] and [RW): (i) from §3 [RW)] or [MP] Chapter 2, (ii)
and (iii) from §3 and §6 of [RW] or [MP] Chapter 2, (iv) from [RW] Theorem 8.15, and (v)
from [RW] Theorem 9.7. U
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