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1 Introduction

Toroidal Lie algebras were first introduced in [24] as a natural generalization of
affine algebras. Given a finite-dimensional simple Lie algebra a, a toroidal algebra
is a central extension of a ® C[ty,...,tn, 17", .., ¢, '], where the t; are commuting
variables. Toroidal algebras can be thought of as iterated loop algebras in many
commuting variables. Such algebras can also be defined using generators and rela-
tions as we do here.

One motivation for the study of toroidal Lie algebras is for potential applications
to mathematics and physics. For instance, one of the cocycles used in the construc-
tion of the toroidal extended affine Lie algebra is also used in Billig’s study of a
magnetic hydrodynamics equation with asymmetric stress tensor (see [7] and [6]).
In addition, Billig [5] and independently Iohara, Saito and Wakimoto [17] derive
Hirota bilinear equations arising from both homogeneous and principal realizations
of the vertex operator representations of 2-toroidal Lie algebras of type A;, Dy, Ej.
They derive the hierarchy of Hirota equations and present their soliton-type solu-
tions. In [20], Kakei, Ikeda and Takasaki constructed the hierarchy associated to
the (2 + 1)-dimensional nonlinear Schrodinger (NLS) equation and show how the
representation theory of toroidal sls can be used to derive the Hirota-type equations
for 7-functions. On the somewhat more mathematical side, in interesting work of
Ginzburg, Kapranov and Vasserot [16] on Langland’s reciprocity for algebraic sur-
faces, Hecke operators are constructed for vector bundles on an algebraic surface.
The main point of their paper is that under certain conditions, the corresponding

TCorresponding author.



842 S. Buelk, B. Cox, E. Jurisich

algebra of Hecke operators is the homomorphic image of a quantum toroidal alge-
bra. One should also note some of the recent work of Slodowy [27], Berman and
Moody [3], Benkart and Zelmanov [1] on generalized intersection matrix algebras
involve their relationship to toroidal Lie algebras. In addition, Wakimoto’s free field
realization of affine 5/[; and Feigin and Frenkel’s generalization to non-twisted affine
algebras § play a fundamental role in describing integral solutions to the Knizhnik-
Zamolodchikov equations (see for example [28], [14], [21], [12], [25] and [26]).

The representation constructed here is similar to what is often called a “free
field” representation, that is, our Lie algebra elements will be realized as formal
power series of non-commuting differentiable operators a,, (n € Z) acting on a given
vector space V', where the formal power series associated with the Lie algebra be-
come finite when applied to an element v € V. Our representation is constructed by
first finding a representation of an infinite-dimensional Heisenberg like algebra, and
then “inducing” to the full toroidal algebra. The free field representation in this
paper is a generalization of the second author [9, 10] which were in turn motivated
by the work of Feigin and Frenkel [13, 15] constructing free field realizations of affine
Kac-Moody and W-algebras, as well as [4]. A completely different representation
of a class of toroidal algebras given by free bosonic fields appears in [18]. Interest-
ingly, some free field representations of toroidal lie algebras can be used to construct
vertex algebras (see [2]) of a certain type, where all simple graded modules can be
classified (see [23]).

Part of our motivation for studying Wakimoto type realizations of toroidal sl,, 11
is to gain insight into the role of 2-cocycles in a more general construction of free
field realizations for universal central extensions of Lie algebras of the form g ® R,
where R is an algebra over the complex numbers. Another motivation is that they
can often provide, in the generic setting, realizations in terms of partial differential
operators of imaginary type Verma modules for toroidal Lie algebras. We plan to
see how the realizations in this paper are related to these modules in future work.

2 Notation and Preliminary Setting

All vector spaces are over the field of complex numbers C.
Let A, = (Aij)};—o be the indecomposable Cartan matrix of affine type Al

with n > 2. Let IT = {agp,aq,...,a,} denote the simple roots, a basis for the
set of roots denoted by A. Let @ be the root lattice, i.e., the free Z-module with
generators agp, @1, ..., 0a,. The matrix A, induces a symmetric bilinear form (- |-)

on @ satisfying (a;|a) = A;j. For 0 < ¢ <n, we set &; := .

We review some of the calculus of formal series following [22], and we introduce
a slightly modified form of the A-bracket notation and Fourier transform of [19]
which provides a very compressed notation, however many of the calculations are
actually done in the more expanded form of [22]. As pointed out in [22], the formal
calculus generalizes to several commuting variables, the case used here. Throughout
this paper, z;, w;, ;, y;, A; will denote mutually commuting formal variables with 4
ranging over some index set. We use multi-index notation, for a positive integer
k, given an element (mg,my,...,mg) € ZFTY we write m = (mg,m1,...,my),

mo M1

and define z™ = z"°2{"" --- z;"*. Denote by 0 the k-tuple of all zeros, and by 1
the k-tuple of all ones. Fix a decomposition of ZF+! = ZF*1 y {0} U ZX™ into
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three disjoint subsets such that Z]f'l are sets closed under vector addition, i.e., for
example, if j, k € Ziﬂ, then j+ k € Zf_"’l. Define m > 0 if m € Z’f‘l and m <0
if m € Z**!. Define the function 6 by (m) = 1 if m > 0, and 0 otherwise.

We work with formal series a(z) = Y, anz ™ with a, € End(V) for a vector
neZk+1

space V described below. The series in this paper are summable in the sense of

[22], i.e., the coefficient of any monomial in the formal sum acts as a finite sum

of operators when applied to any vector v € End(V). To simplify notation, we

denote C[[z0,25 ", 21,21 -+ 2k, 25 )] as C[[z,27Y]]. Define 6(z) := > z" €
neZk+1
Cllz,z71]. Similarly, 6(z/w) == >, z™w ™™ € C[z,z !, w,w1]] so that
mezZk+1
k
§(z/w) = T 6(2i/wi), where 8(z;/w;) = 3 2Fw; .
i=0 k€7

The following properties of § hold (see [22, Proposition 2.1.8]) which we repro-
duce here in the multivariable setting.

Proposition 2.1.
(i) Let f(z) € V]z,z 1]. Then f(z)d(z) = f(1)d(z).
(ii) Let f(z,w) € EndV([[z,z=, w,w~1]] such that zh_)rr&{ f(z,w) exists. Then in
End(V)[z,z" 1, w,w™1]], f(z,w)i(z/w) = f(z,2)0(z/w) = f(w,w)(z/wW).

The formal residue for an element f(z) € V[z,z!]] is Res,, Y. anz" =
> anz;z". Alternatively, we can define Res, as Res, Y. anz"™ = a_1, the
b nezZk+1

n;=—1

coefficient of z~!. We introduce a slightly modified form of Kac’s A-bracket notation

and Fourier transform (see [19]). For any a(z,w) = > amnz™w", we define the
m,n

Fourier transform F,\,a(z, w) = Res;, - - - Res. > io Ailzimwi) g (z, w).

aj i

For j = (Jo,.--,jk) € NFt1 set j! = joljy! - gkl 8&” = % Ji . and oW =

k ) . . ki

9. We also write A& = N/jit=T1] )‘], . Using this notation allows us to

=0 i=0 7

compress many of the formal series we will encounter, due to the following identity
F},095(z/w) = AV, (1)

To prove identity (1), we recall a few properties shown in [19, Proposition 2.1]: For
J>0,

Res. 09 6(z/w) =0, (z—w)dY V(z/w) = 8Y)8(z/w), (z—w) T8V 6(z/w) = 0.
Thus,
F},096(z/w) = Res., - ~-Resznez'§=0 Ai(zi=wi) 9U) 5 (z /w)
= Res,, - - Res (ﬁ ( io: LE —w')ki) ﬁ 6(j?)5(z'/w'))
20 Zn, Tl 0 i L w; i i

i=0 N k;=0
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1=

k o0 . k n s

[T Res., (30 X (21— wi) )06 (zifwn) = TT 3 = A9,
0 ki=0 " i=0 7"

If a(z), b(w) and ¢/ (w) are formal distributions satisfying

[a(z),b(w)] = > d(w)oWs(z/w),

JENk+1

we have F, [a(z),b(w)] = > A(w)AY . The A-bracket is defined as

jENk+1

[a(w)ab(w)] = 3 J(w)A,

jENK+1

achieving the compressed notation. When the variables are clear from the context,
we sometimes omit the formal multivariables z, w. Properties of the A-bracket that
we use frequently include

[axlbne]] = [[arblatne] + [bnlaxd]],  [ax(be)] = [axd]e + blaxd]. (2)

2.1 The toroidal Lie algebra. Fix a positive integer N. We define the toroidal
Lie algebra 7(A4,,) by generators and relations. The generators are

Kmj, Hi(m), FEj(m), F;(m) (0<i<mn, 0<j<N, meZzN.

We will use generating functions to write the relations of the algebra.
The generators of 7(4,) (1 <i<n,0<s < N) have generating functions:

Ky(z) = Z Km,sz™™, Hi(z) = Z H;i(m)z™™,

meZN+l meZN+l
Ei(z) = 3 Eim)z™™, Fi(z)= 3} E(m)z™™.
mEZN+1 meZN+1

Let 0,, = Biz@- denote the formal differentiation. Define the operator D, and

- 0
_Bzi’

N
D := %" D, (the indeterminate in use is understood in the context of the formula).

s=0
Then
N N N
K(z)- D=3 Ki(z)5%, K(z)=3 Ki(z) = > > Kmz ™z,
i=0 ‘ i=0 i=0 m

N
D -K(z)=> > mpKmsz™.

s=0mezZN+1

The relations of the toroidal algebra 7(A,,) are given by the generating functions:
(RO) K;(z) is central, D - K(z) = 0;

(R1) [Hi(z), Hj(w)] = Ai; K(w) - Dé(z/w);

(R2) [Hi(z), Ej(w)] = Ay Ej(w)d(z/w), [Hi(z), Fj(w)] = —Ai; Fj(w)d(z/w);
(R3) [Ei(z) | = =01 (Hi(w) + - K(w) - D)d(w/z);

(R4) ]

Aij

=0 = F(Z) z(w)]a adEz

: [Fi(2), F; M @) Ey(w) = 0 for i # j,
ad F; 49 (2) Fy(w) = 0 for i # j.
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3 The Toroidal Heisenberg Algebra

Define the toroidal Heisenberg algebra % as the Lie algebra with generators b;(r)
(I<i<n)and Ky, (0<p<N,re Z"~1) which satisfy the following relations:

N N
[bi(r),bj(s)] = Aij Y rpKrisp and > r,Kyp,=0 VreZVtL (3)
p=0 p=0

Here A;; denotes the (i, j)-th entry of the Cartan matrix A,,, where we have deleted
the first row and column. If we set

bo(m) := — 3 bi(m), (4)

then one can check that the first equality in (3) is also satisfied for ¢ = 0 or j = 0.

3.1 Representation of the Heisenberg algebra. We define a polynomial ring
over indeterminates indexed by 0 <7 <n+1and k € ZN+L.

Cly] :=Clyi(k) |0 <k e ZVt! 1 <i<n].

For fixed kmyp € C, 0 < p < N and \; € C, we define a map ® : B — EndCly]
below by an action on the generators. The construction of the map is similar to that
appearing in [10]. The motivation for the definition of ® uses heuristic ideas about
how the toroidal Lie algebra “should” act on sections of certain (not well defined)
line bundles. For readers who are interested in this heuristic type of construction,
one could consult [13], [4] and [11]. The resulting map & is twisted as in [10] so that
®(b;(m)) is a well defined element of End C[y]. The definition of ®(bg(m)) follows
from the definition (4).

Proposition 3.1. (Realization of the Toroidal Heisenberg Algebra) Fix fim,, € C,
0<p< N and \; € C, where 0 < i <n. Assume

N
> Mpkmyp =0 for all m, (5)
p=0
N
> MpK—m-np =0 for m >0 and n > 0. (6)
p=0

Then the map ® : B — End Cly] given by

®(bi(m)) = 0(—m)

( ) ( —1(s) — 2ayi(s) + aywl(s))mpm—m-*-syp
p=0s>
+ 0(—m)y;(—m) — dm o\,

P(Kminp) = —F-m-np

N
2_: §>: ( yi-1(s) ayi(s))mpﬁ*m+5,p
N
>

for 1 <i<n and m,n € ZN*! defines a representation B on Cly].
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Proof. For 1 < i,j <n, we have

®(bi(m)), (b;(n))]

[ N
= 0(—n)0(—m) (8,1 — 0;,) Zo Mpk —m—np
=
N
+0(=1)0(m)(di-1 — 201 + Gj.i41) 3 Mpkm-np
p=0
N
— 0(=m)0(—n)(d; ;1 — di.;) ZO Ngk—m-n.q
q:

N
= 0(=m)0(n) (311 — 205 + i j41) 3 Ngh-m-ng
q=0
N

= (0()0(—m)+ 0(—n)0(m)+ 0(—m)0(—n)) (3j,i—1 =205+ 0ji+1) 2 Mpk—m-n,p
p=0
N N
= (dj,i-1 = 2015 + 8j.i41) 2 Mpk-m—np = —Aij 2 Mphi—m-np,
p=0 p=0

where in the last two equalities we used the hypotheses (5) and (6), respectively.
The remaining relations are also straightforward. O

4 Main Result, the Representation of the Toroidal Algebra
Leti,j <n+1, meZV*! and
Clx] == C[z;;(m)[0<i<j<n+1, meZV].

The elements z;;(m) act via multiplication on the ring C[x], and hence on the ring
C[x] ® Cly] (as z;;(m) ® 1). Define the following differential operators acting on
the polynomial ring C[x] ® Cly]:

. o 0
Qijm = —x;;(m), Gjjm = D, (—m) (7)
With corresponding generating functions

aij(z) = > aymz ™, aj(z)= > ajmz ™, Ks(2)= ) Kmsz™,
meZN+1 mcZN+1 mezZN+1

define the operators

N N N
K(z) D=} m(z)a‘zi, K(z) = ) Ki(2z) = 30 3 kmiz2™ 2
=0 =0 i=0 m

Note that k(z) - D is a weighted version of Euler’s differential operator. The oper-
ators ®(b;) commute with the a;jm, aj; ,, and act on C[x] ® Cly] as 1 ® ®(b;).
Theorem 4.1. (Realization) Let km, be fixed complex numbers satisfying condi-
tions (5) and (6) and fix A\; € C for 0 < i < n. Then the generating functions given
below

§ENE) = trris(2) — 3 00135, (2),
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p(H,)(z) = 2a7>,r+1(z)a7’f7r+1(z) + TX:ll (ai,r-&-l(z)a;wrl(z) - air(z)arr(z))
n+1 =
£ 8 ()05 ) = e (2 (2) + Do) 2]
P(E)(2) = arri1(2)a; 4 1(2)a; 41 (2)
n+1 r—1
=S arg@a, @)+ Y aj(2)as, 0 (2)
Jj=r+2 Jj=1
n+1
+ :24_2 (arj (z)aj,j(z) — Qr41,5 (z)a;k--i-l,j(z)) a:,r+1(z)

051 (2)0(b,)(2) + 5 - Das, . (2)
for 1 < r < n, together with

p(Eo)(z) = —ai1nt1(2),
p(Ho)(z) = —T;p(Hr)(Z)

= = S @) X (B (a, (2) + 200)(a),
WF)@) = Y —an@ X I @ @l (@)

1<r<j<n+1 A;J=qi;r>qi—1 1=1

Y Y I, @002

1<r<n+1lr>g;,qj=1

i—1
- Z Z H aZij+1 (Z)K’ : Da:,’rb‘rl(z)’

1<r<n+1r=q;,qj=1

define an action of the generators F,.(m), F,.(m) and H,(m) and a representation of
7(Ay) on the Fock space C[x]|®Cly]. In the partitions above,1 = q1 < g2 < -+ < ¢;,
gi+1 = n+ 1. In addition, Ky, ; acts as left multiplication by —Kk_m.

k—1
Note that one should also have p(Ej;) = —ag + 21 ajia}y for k <1, but we do
j:
not seem to need this general formula, so we do not determine whether it is always
true.

5 Proof of the Main Result

We should point out that the proof requires very lengthy (at least to us) calculations.
We have selected representative portions of the calculations to include here, from an
original manuscript of over one hundred pages, a version of which is available (see
[8]). Calculations similar to those omitted can be found in [9] and [10], students
may also wish to specialize to the special cases of type As and As especially the
latter which is a good guide for the general setting of n > 2.

Let ®(b,.) := ®(b,)(z) = > ®(b,)(m)z~™, then we can write the last calculation

m

N
in the proof of Proposition 3.1 as [® (b, )aP(bs)] = Ars > p(Kj)A\ = —Apsk - AL Set
=0
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Kj(w) := (ZK Jw ‘”)wl. Relations (RO) are satisfied by the definition of K.
The relatlons (R1)—(R4) will follow if the following A-brackets are satisfied:

(T1) [p(H) (W) (HJ><w>]=AU§p<Kl><w>Al (0<ij < n)
(T2) [o(H) (w)rp(E,)(w)] = Up< (), [ W) 30 5)(w)] = — A5 )
(13) [p(E:) (W)xo(F)(w)] = =bi5 (p(H) (W) + 2 3 (KD (W) )
(T4) [o(E:) (w)ap(E;)(w)] = 0 = [p(F)(w)ap(Fy)(w)] if i — j] # 1.
[p(Ei<w>A>[p<Ez><w>up<E Jw)]] = 0if i = j & 1.
[P(F) (W)L (F) (W) () (w)]] = 0 if i = j £ 1.

Proof. We demonstrate how to write the relation (R1) in A-bracket form:

2 [Hi(m), Hj(n)]z™"w™"

m,n

N
= Aij 30 Ki(w)0u,0(z/w) = Ai; 5 (w)oVi(z/w),
=0 JENN+1
where ¢/ (w) is defined as follows: we take e; to be the N-tuple with 1 in the I-th
position and zeros elsewhere, and define c® (w) = K;(w) and &/ (w) = 0 if j # ¢; for
some 0 <[ < N. Applying F* gives the result. O

5.1 Preliminary lemmas. We have the following identities for a; j m and a; jm
as in (7), whose proofs carry over from [10, Lemma 4.1]. The identities are written
which we write in terms of the A-bracket. In the interest of compressing the nota-
tion, we will often suppress the variables z, w in the computations, especially when
using the A-notation, where the presence of the multivariable w is assumed.

Lemma 5.1. [10] Let ¢,j,k,l € Z. Then for the generating functions a;;(w) and
a;;(w), the following identities hold:

(a) [aij(w )MZz( w)] = 6i,k0j1,

b) [ai;(w)a] ( w)Aaij(w)a ]( w)] =0,

(
(©) s (W) Day (W) = 80850 32 iy = - D (w)Aay (),

n+l s—1
(@ 3 5 [ aa (W) Xars (W)a3, (0)] = B i1np 1 (W)a o),
z‘:l n—‘,—;
(© X 3 |acria(W)ah(w)Aaj (w)aj, . (w)| =0,
j=1k=s+2
n+l s—1
(f) ks (W)af o1 (W)Aar 15 (W)ar 5 (w)] =0,
j=r+2k=1
n+1 n+1
(8) % 3 |awria(wa(w) (an (W), (w) = ariyj(w)ai,, ,(w)) |
j=r+2 k=s+2
n+1l n+1
=—20r5 ) arJrLj(W)a:j(W)"‘(sr,erl > am—(w)a:_Lj(W)
Jj=r+2 j=r+2
n+1

+ 0541 D ar+2,k(w)a;‘i+17j(w)7
Jj=r+3
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r—1
() 5 (0201 (W)x0305 10 (W)] = =007 a (W),
J=
. n+1
() 3 [0t (W)aarr s (W05, (0)] = 601,007, a(w).
J=r+

Proof. Only statement (c) is new,

053 (2), k(W) - Dag ()] = 5 5 5 hmplasy(m), afy (@] whi, 52z~

m p=0n,q

*&k@lZZanW Zmpz mym — §

p=0 n

HMZ

Z Fon,p W Wy 37&5(2/"")
n

and

N
= %1: > > knpla;(a), ai;(m)] Z“W*mzpa%pz*q

="

= —0; 101 Znn,pz“Zmpzmw’m = 0; 10;, Z > KnpZ w,,da 5(z/w)
p=0 n p 0n

N

= 0 k0,1 >, > EnpW wpa 3(z/wW) + 6; 10,1 Z wpaw (Zmnpw ) (z/w)
p=0 n
N

= 0ik0i0 3 5 Wy 50 (2/w) + 854050 S ( 5 T
p=0 n n p=0

I
o
ol
N
M=

=0~]

Hn,pw“wp%(;(z/w)

)i
(=)

by the relation (R0O). Now we take the Fourier Fz):w transform of the above, obtain-

N
ing [aijak - Dayy] = [k - Dajaaij] = 8 1051 Y kpAp = 6 k0515 - A O
p=0

In addition, the following consequences of Lemma 5.1 are useful:
Lemma 5.2. The following identities hold:

[ (W)@ (W) s 41 (W) (W)] = O { CLJCLSJJFSI-&-(;(I‘)?‘;)]*Z}E;(I;’V) ;{ Z z ;Jr 1, (8)

[aij(w)a”( ) kDa}, (W) = 6imdjnk - Daj; (w) + SimOjnal;(W)K - A. (9)

Proof. We prove only the second relation (9) and leave the other to the reader. By
Lemma 5.1(c) and by properties of §(z/w), one has

[ai(2)aj;(2), K Doy (W)] = Gimjna;(2)w Dud(2/W)
= OimOjnkiw D (a};(2)0(2/W)) = Gim0jntiw D (af;(W)d(z/w))
= OimOjn(FuwDwa;(w))d(z/w) + 5im5jna;-*j(w)/$wa5(z/w)).
Note that the formal multivariable in the series a,;(z) is not affected by the operator

k(w)D,, which acts on series in w. Now applying the transform FZ)‘W gives the
result. d
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5.2 Relations involving H(z). The relations (T1) and (T2) involving the H;(z)
are simpler to verify than those of type (T3) and (T4), so we begin with them. A
reader familiar with other free field representations or vertex algebras can verify
relation (T1) as an exercise (see also [9]). Because of the definition of a;; and aj;
given in (7), there are no multiple contractions when computing out the operator
product expansion for these terms. To further compress the notation, we sometimes
omit the multivariable w in our computations when the variable is clear from the
context.

Lemma 5.3. (T2) [p(H,)(W)xp(Eo)(W)] = A,op(E.)(w).

Proof. First assume r,s # 0. If |r —s| > 1, observe that the indices of a;; and
a;; that appear in p(H,)(z) and p(Es)(w) are disjoint and thus by Lemma 5.1(a)
contribute nothing to the A-bracket [p(H,.)(w)xp(Fs)(w)] (or equivalently to the
commutator [p(H,)(z), p(Es)(w)]). The remaining terms coming from the b; have
trivial commutator and thus [p(H,)(W)xp(Es)(w)] = 0.

Now assume r = s (with r, s # 0). In this case, p(E,)(w) is equal to

n+1
* * * * *
Qrr41Qp 410 py 1 + E (aTjarj - aTJrl;jar—i-l,j) Qi1
Jj=r+42
r—1 n+1
* * * *
+ Z AjrQjpy1 — Z Ar41,50r 5 + ar,r+1¢)(b7”) Ttk Dar,r+1a
=1 J=r+2
and p(H,)(w) expands to
r—1 n+1
2r 415 yy + 2 (Girp10] 00 — apal) + 30 (arjal; — argajalyy ;) + ®(by)
i=1 j=r+2

(where we have suppressed the variable w). Now

2[arr105 1 ap(Er)]
n+1
= 20r, 4107 01071 T2 )0 (ar,ja:i,j - a7'+17ja:+1,j) Uyt (10)
j=r+2 N

+ 2aI7T+1<I>(bT) + 2k - Daj g + 205,44 > KA
=0

The second summation in p(H,)(w) contributes

|
—

r

[ (@ir0105,11 — asmat,) , (B

3 .
[
=

r—1
- . |: (az,7'+1ai,r+1 a’zra‘ir)A a‘zrai,r+1:| =2 2:1 azrai,rJrl' (11)
g i=

I
—

Now in the third summation in p(H,)(w), the index j is greater than or equal to
r+2, and so commutes with all but the second and fourth terms of p(E,)(w) above,
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thus
n+1
> [ (arja:j - ar+1,ja;ﬁ+1,j))‘ p(Er)]
Jj=r+42
n+1
= X , ([arja:jAaTja:j] + [ar+1,ja?i+1,j,\ar+1,jaiﬂ,j])
Jj=r+
n+1 n+1
- 2 X [(anay; _ar+1,i‘1¢+1,z‘) AGr41,5075]
i=r+2 j=r+2
n+1
=-2 > ar+1,ja:j (12)
Jj=r+2

by Lemma 5.1(b) and (g). The last term in p(H,.)(w) contributes
N
[q)(br)AP(ET)] = [q)(br)ka;t,r+1q)(br)] = *QG:,r-i-l ZO “;D)‘p' (13)
=

The previous four calculations (10), (11), (12) and (13) sum up to give us the desired
result [p(Hr)ap(Er)] = 2p(Ey).
Now suppose s = r + 1 so that p(E,1)(w) is equal to

n+1

* 2 * * *
aT+1,T+2(a’r+l,r+2) + ) E 3 (aT+1,ja’r+1,j - aT+2,ja’r+2,j) Ari1,r42
Jj=r+
T n+1
* * * *
+ D0 @ir10] 0 — Do Gry2 0y a0 ®(bry1) K Daj g .
i=1 j=r+3

Then the first summand in p(H,)(w) contributes

2 [ar,r+1 a:,r+1 AP(Eri1 )] = —2a; 41 a:,r+2 .

The second summation in H,.(w) contributes

r—1
* *
[(ai77"+1ai,r+1 - airair))\p(ET-l-l)]
i=1
r—1 r—1
— * * . *
= 2 [(air4107 41 = air},) y0ir 4105 1 40] = = 2 iri10],40.
i=1 i=1
The third summand contributes by Lemma 5.1
n+1
* *
> [(arjag; = arprjaiyy ;) p(Eri)]
Jj=r+2 ntl
_ * * Lk _ Lk *
= = Org1r 42071 20012 T D (ar+1,yar+1,j ar+2,Ja7-+2,j) Q1,042
j=r+3
n+1
* * *
- a’T,T+1ar,r+2 - Z a’T+27jar+1,j - a’r+1,7‘+2q)(b7"+1)
j=r+3

N
* *
— kK- Da’r+1,7‘+2 g2 Z KA.
=0
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The last summand in p(H,)(w) has A-bracket with p(E,1)(w) equal to
N
[(I)(br))\p(Er-i-l)] = a:+1,r+2[ﬂ(br)>\f)(br+l)] = a:+1,r+2 Eo KpAp-
p:

Adding the previous four equations up, we get [p(Hy)ap(Er+1)] = —p(Erg1)-
The final nontrivial case to consider is when s = r — 1 (and rs # 0) so that
p(Er—1)(w) is equal to

n+1
* 2 * * *
a”f’*lﬂ“(arfl,r) + Z (a”‘*lﬁjar—l,j - arjarj) Ar_1.r
j=r+1
r—2 n+1
* * * *
+ > Ajr—105, — > arjay_q ;+ ay_y , ®(bp_1) + K- Daj_y,.
=1 j=rl
Then 2[ar,r+1a:,r+1>\p(Er71)} = _2a:—1,r+1ar,r+1~

The second summation in p(H,)(w) contributes by Lemma 5.1

r—1

Zl [(ai7r+la’;r+1 - aira;‘r)kp(Er—l)]
1=

—a

n+1
_ * * Lk _ Lk *
- r—1,rQp_1 pQp_1,p — Z (a”F*L]a’r—l,j a’Tjarj) Ar_qp
Jj=r+1
r—2 N
* * * *
- Z Aj,r—10jp + Arr+1Qp_1 py1 — a’rfl,rq)(bel) — K- Da’rfl,r - ZO K;P)\p‘
Jj=1 p=

The third summand contributes

n+1 n+1
[(a?“ja':’j - aT-‘rLja:Jrl,j))‘p(ET—l)] = > ar,ja:—l,f
j=r+2 j=r+2

The last summation in p(H,)(w) has A-bracket with p(E,_1)(w) that reduces to

N
[é(br)AP(Erfl)] == ;0 KpAp-

Summing the previous four equations gives [p(H, )(w), p(E,_1)(w)] = —p .
We now consider the case of s = 0 and r # 0: Then p(E;)(w) = p(Ep)(w) =
—a1,n+1 and hence Z[ar,r+1aﬁ’r+1Ap(Eo)] =0.
The second summation in p(H,)(w) contributes

r—1
- [(ai,r-‘rla;r+1 - aira;p))\al,n-&-l] = Orn1,nti-
i=1
The third summand contributes

n+1
- > [ (av"jaij - ar+1,ja:+1,j)>\ a1ni1] = 0r 101 nt1-
Jj=r+2
The last summation in p(H,)(z) has commutator with p(Ep)(w) equal to 0, and
hence does not contribute to the A-bracket. Summing the previous three equations,

we get [p(H)(w)ap(Eo)(w)] = —p(Eo)(W).
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n

If r =0, since p(Ho) = — > p(H,), we get

r=1

n

[o(Ho)(W)xp(Es)(W)] = — 2. [p(Hr)(W)xp(Es)(W)]

r=1

:—éA,.,spms)( w) = Ao,sp(Es)(w),

which holds for any s. This completes the proof of the lemma. |

Since our expression for Fy(w) is quite different from that of F;(w) if i # 0, we
will prove that case separately. First we consider the case:

Lemma 5.4. (T2) Forr,s #0, [p(H.)(W)xp(Fs)(w)] = —A,sp(Fs)(w).

Proof. We assume s,r # 0 in

n+1
[HT)\FS] = [ Z a; 7"+10“z o+l T Z a"azr + Z Arja 7"j
= +1
- n+1 = s—1
- > Ur41,j0741 5+ (b )ras,s+1 — Z a’J»é+1aJs:|
J=r+2 Jj=1

(omitting the multivariable w as before). Using Lemma 5.2 and the fact that ®(b,)
commutes with a;;m and aj; ,,, gives

r n+1 n+1
[ Z ai,r*ﬂair—&-l Z alTa’zr + Z Arj@ T'j Z Ar41,54 1+1 Wi + (I)(bT))\aS,SJrl}
=1 J=r+1 Jj=r+42
- - 6r+1,s+1as,s+1 + 6r,s+1as,s+1 - 6’r,sas,s+1 + 6r+1,5as,s+1 - _A’rsas,erl-

For the remaining component, we must show

r r—1 n+1 n+1
[( > Qi 1G],y — ) ai,,a;‘,.) + ( D anjaz;— ) ar+1,ja:+1,j>
i=1 i=1 j=r+1 j=r+2 A
s—1 s—1
~Tu SHaJS] = Ars 3 a0105, (14)
Jj=1 J=

r r—1 s—1
First note that by Lemma 5.1, [Z Qi 1G] oy = D QirQly — D, aj7s+1a;*-s} =0
i=1 i=1 j=1

unlessr=s,r+1=s,0orr=s+ 1.

Equation (8) of Lemma 5.2 allows us to compute each case. Suppose r = s, then

T r—1 s—1
[Z Qi 4107 1 — Z QirQj, — Z aj,s+1a§s}
s—1

Z a]75+1a’j8 + Z a]75+1a'j5 =2 Z aJ75+1ajS
=1

r—1
Suppose r = s — 1, then [— Y Qi — Z aj;, S+1aﬂ} =0 and
i=1 j=1
T s—1 s—1
* * _ *
{E a’iﬂ“+1ai,r+1>\ - Z aj,erlajs} = — Z Ajs+105-
Jj=1 j=1

i=1
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T s—1
Similarly, if r = s + 1, then [ D Qi 410741y — 2, Gjs+1a5,| =0 and
i=1

i=1

|: r—1 s—1 s—1

* * _ . *
- > QirQip ) — > aj78+1ajs:| =-> Aj,s4+10j-
i=1 j=1 j=1

We have shown

s—1 ] s—1

T r—1
K > ai,r+1azr+1 - aira?r) -2 aj,s+1a;s =AY, aj,erla;s' (15)
i=1 i=1 A =1 j=1

Applying Lemmas 5.1 and 5.2 and splitting into cases r > s — 1, r = s — 1
and 1 <r < s—1, a straightforward computation shows the remaining component
satisfies

n+1 n+1 s—1
[ Do Qrilr = Y0 A1l gy — D aj7s+la’;s:| =0 (16)
i=r+1 1=r+2 j=1
for all r, s # 0. Equations (15) and (16) give (14) and the desired result. O

The case of [Ho(w)xF;(w)] is similar to the above and is left to the reader. Next
we consider the case of Fy(w).

Lemma 5.5. (T2) For all0 < k <, [p(Hg)(W)xp(Fp)(w)] = —AroFo(w).

Proof. To simplify the computation for p(Fp)(w), one should note that for all
positive integers s,t,i, and fixed (i + 1)-tuple q = (q1,q2,...,qi+1) € Z*! with
l=q¢ < ¢ <---<gq, it follows immediately from Lemma 5.1 that

7 7
* * _ *
[aStaSt)\ lH1 Gq, qz+1:| - lHI 55‘11 5t‘II+1aqzqz+1 : (17)

*

qzqz+1] is zero unless s and t appear as

i
In other words, the expression [agal,y [] a
=1

consecutive integers in the increasing sequence q; < g2 < --- < ¢; in which case
[astat; ] acts as an identity operator. From this observation and noting that the
expression p(Fp)(w) contains sums of strings of such products, one is motivated to
arrange terms of p(Hy)(w) to promote cancellation, writing (where we suppress the
multivariable):

k n+1 k—1 n+1
p(Hy) = > Qi k4107 gy — > At 1,50 i >agal,+ > akjazj + O(bg).
i=1 ’ j=k+2 ’ i=1 j=k+1

Now consider the A (or equivalently the commutators) of components of p(Hy)(w)
and p(Fp)(w), and will show that [p(Hy)(w)xp(Fo)(w)] is zero except in cases of
k=0,1,n. Let

n+1 1—1
Py— * *
A= - Z Z QArm Z H aqlql+1a7’,n+1’
1<r<n+1m=r+1 a =1

m=q;>q;_1""">q1=1
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7
B = — Z (I)(b'r) Z H a‘Zlqz-H’
1<r<n+1 rrai>as ye>a=1 =t
i—1
C :=- Z H aZl(IZJrlH ’ Da:7"+1’

q —

r=q;>q;_1-->q1=1

so p(Fo)(w) = A+ B+ C. Because it is simpler, we first consider the second
component B. Fix r with 1 < r < n +1, recall ¢;41 = n+ 1, and fix & with
1 <k <n. Inafixed q € Z! as above, if none of the ¢; = k+ 1 for 1 < j <,

k n+1 i
then by (17), [( > ai,kJrla;k-i-l - 2 a‘k+1»ja’lt+1,j>>\ [1 a;t‘]l+1:| =0.
i=1 G=k+2

On the other hand, if ¢t = k + 1 for some 1 < t < i 4+ 1 (unique because of the
conditions on q), then (17) shows

k n+1 7 7 7

. * _ Lk * _ * _ * _
[( ) Qi k+105 k41 Z ak+1aiak+1,j))\ H aqlqz+1} - H Agq111 H Qg1 = 0.
=1 j=k+2 =1 =1 =

Since ®(b,)(z) commutes with the operators a;;(w) and a;;(w), summing over 7, q
with r > ¢;, we have shown: For 1 < k < n,

k n+1
* * —
[ > Qi k+105 g1 — ak+1,ja’k+1,j>\B} =0. (18)
i=1 j=k+2

A similar argument shows that for 1 < k <mn,

n+1 k—1
{ > akjag; — > aikafk)\B} =0. (19)
j=k+1 =1

Adding equations (18) and (19) shows [p(Hg)(w)xB] =0 for 1 < k <n.

Now consider the first component A of our realization of Fy(w). Note that the
i—1

last term ay , ., may also appear in the product [] a
=1

E3
Qqi41”

Assume k # n, apply
(17) and (2) for simplifying the brackets:

* *
> [ai7k+1ai,k+1 = Q41,5051 A

i,
i—1
— . . * *
= Z Z (az,k+15z,7'5k+1,m E H Cqq141 Prnt1
i,j r<m L m=di =1
’ r2qi_1>q1=1
i—1
* *
— 1,0k 1,05m D Il aqlql+1ar,n+1)
a, m=q; =
r2a; g >ay=1 =
i—1
* *
+ Z (— a7‘m5k+1,m E H Cq1q141% n+1
r<m a =1
m=q;>q;_1""->q1=1
1—1
* ¥ *
+arm Xq: I1 Agq141 [ak+171 Api,j Aar’”Jrl])

m=q;>q;_1""">q1=1
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—1

[
Z (ar,k+16mk+1 Z H a;LtIz+1a:»n+1

r<m a4, m=4q; =1
r>q;_1->q1=1
i—1
* *
— @kt 1,mOk41,r > [1 aqlqmamﬂ)
q, m=q _
r>qp 1 >7q1:1 =1
1—1
* *
+ Z (_ arm6k+1,m Z H g qr41Orn+1
r<m a —

m=q;>q;_1-->q1=1

i—1
* *
+ 5T7k+1a7‘m Z H Qg qr+1 ar,n+1)
=1

a
m=q;>q;_1-->q1=1

= 0.
Thus, for 1 < k < n we have shown

k n+1
[ Z Wikt 10] g1 = 2 ak+1,ja2+1,j>\A} =0. (20)
=1 j=k+2

Using a similar argument, one can also show for 1 < k& < n,
k—1 n+1
[ —anag + 3 akjamA] —0. (21)
i=1 j=k+

We have shown [Hg(w)xA] =0 for 1 <k <n.
Using Lemma 5.2 and equation (17) as above, for 1 < k < n, one obtains

n k n+1
TZI { Z a; k+1az k+1 sz:m ak+1,ja2+1,j>\c}
i—1
= > [1 a;qlﬂal*cﬂ,nﬂ“ " A, (22)

a =
ktl=q;>q;j—1>q1=1

and for k with 1 < k < n,

n k—1 n+1 i—1
> [ —aman +3 ajag; C] S T @i A (23)
r=1 =1 J=k+1 k:qi>qi7q1'-->q1:1 =

The last term ®(b;)(z) appearing in Hy(z) commutes with all of the operators
aij(w),a;;(w), so all that remains is to compute for 1 <k < n:

7

{q)(bk)(w)k - E (I)(bT)(W) Z H Cqq141

a _
l<r<ntl r>q;> >q1:1 -

7

Z Ak’" Z H qu1+1

. q —
1<r<n+1 qui>--->q1:1 =

= (_1) Z H a;zqz+1’<")‘+2 Z H (IlCIl+1 )‘

k—12<11'>q---><11:1 - k>q;>-->q1=1 =1
P
+(=1) > I1 a;zmﬂﬂ A

a =
k+1>qg;>--->q1=1
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= Z ll:ll a;LQH—lH ’ A + (_1) Z Hl a“;zqz+1"<6 ’ A’ (24)

a = a =
k=g; > >q1=1 k4+1=g;>--->q1=1

where we collect partitions in the last equality.
Now for k # 0,1, n, we have shown

[p(Hi) (W)xp(Fo) (w)] = (20) + (21) + (18) + (19) + (22) + (23) + (24) = 0. O3
Now we consider the case k = 1, where
n+1 n+1
Hl = a172a1‘72 — Z a27ja§,j + Z alja}‘j + @(bl)
j=3 =2
Equations (18) and (20) hold for k = 1 as does equation (22), so

n+1

* *
[al,zam - E azjaszFO]
Jj=3
i—1
_ * * % %
= = > I1 Aqqi4192n+1F " A= 1202 pi1K - A (25)
=1

qa
2=q;>q;_1--->q1=1

Furthermore, since in all of our q, ¢ = 1, equations (17) and (9) give

n+1 n+1 i—1
|: Z aljafjAFo} =A+B+ |: Z aljaikj)‘_z Z H aZLqH_lH'Da’:,nJrl}
Jj=2 Jj=2 T 7~=q,3>q71_ql~4><11=1 =
=Fy—aj 1k A (26)
Finally,

[‘I)(bl)AFO] = 2ain+1’€ A= l(ai2a;,n+1 + O’T,n—&-l)/{’ A

= 01905 1K A+ AT ik A (27)

Summing equations (27), (25) and (26) yields [p(H1)(w)ap(Fo)(w)] = p(Fp)(w)
as desired. )
n n—
Now consider H,, = Qi 4105 yq — Y. QinGl, +0n 105, 0 +P(by), writing
i=1 i=1
Fo(w) = A+ B+ C as above, and recalling our assumption that in all the (i + 1)-

tuples q, the term q; 11 = n + 1, a straightforward computation using (17) shows

{4 lai,n+1a?)n+1>\A} = A, (28)
=3

|: Z ai7n+1a’zn+1)‘B:| = B. (29)
=1

Furthermore, using Lemmas 5.1, 5.2 and collecting partitions, one obtains

4

n
[ 2 ai,nJrla;n+1)\C} =C- Z H a;lQl+1K’ " A

i=1 a =1
n>q;>q;_1->q1=1
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Equations (19), (21) and (23) hold for k = n and show

|
_

[ — Ainal, + an,n+1a;,n+1>\A] =0, (30)
=1
n—1
[ — Ainal, + an’nHaZ’nHAB} =0, (31)
i=1
n—1 %
[_ Z ainafn + an7n+1a:z7n+1)\c} = E H a‘:;lQH.lH A (32)
i=1 n=¢;>qi—1>--q1 =1
[q)(bn)AP(FO)] = (71) Z ZH1 QZNILHH " A

a
n—1>q;>q; 1 ->q1=1

+2 >

q
n>q;>q;_1-->q1=1

ar o KA (33)

qQqi+1

=

l

Summing equations (28)—(33), we have

[p(Hy)(W)ap(Fo)(w)] . .
i i
=A+B+C - Zq: [l agq. - A+2 Zq: [T agq. 5 A
n2a;> " >a =1 =1 n>q;> >aqy=1 =1
[ [
o ( Z H a;lq1+1"{->\+ Z a;l‘]l+1"{->\>
a =1 a =1
n=q;>-:>q1 n—1>g;>--->q1=1

The case of k = 0 follows from the above, and is left to the reader.

5.3 Relations involving Fy(w), F.(w), and Serre relations. We will prove a
selection of the relations involving the elements Ey(w), F.(w) including the Serre
type relations.

N
Lemma 5.6. (T3) [o(E4)(w)xp(Fy) (w)] =~y (p(H,)(w) + x pUK)(W)N).
Proof. For r # 0 and s # 0, the proof is similar to that in [9, Lemma 3.4], where
—by(2) — 5 (b1 (2) + b, 1(2)) is replaced by ®(b,) and —Za; ., () is replace by
k- Day . ;. We refer the interested reader to that paper for the proof.
It is also straightforward to check that

N
[o(Eo)xp(Fr)] = =do,r (p(HT) +2= p(Kl)/\l).

The case [p(Es)ap(Fo)] with s > 0 is shown via lengthy calculation made avail-
able in [8]. O

We are now left with the Serre relations:
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Lemma 5.7. (T4) Let p(E.)(w), p(F.)(w), p(H,)(w) be defined as in Theorem
4.1, then the following relations hold:

[p(F7) (W) ap(Fs) (w)]
[o(ER)(W)xp(Es)(w)] = 0 if Apy 7 —
[

o

r)
P(E) (W)A[p(F) (W) up(Fs) (W)]]
(Er)(W)alp(Er) (W) up(Es)(W)]] =0 if Aps = —1.

Proof. As in the previous lemmas, we first assume rs # 0. In this case, the proof
is exactly the same as in [9, Lemma 3.5] with the exception of a sign change in the
formulation of p(F}.).

Now suppose r = 0, by expanding all A-brackets and collecting over partitions
along with other simplifications, one obtains for 1 < s < n:

[p(Fo)ap(Fs)]
i—1 n—1 —
= 6s,nan,n+1 Z H a;qu+1 - 58,71 Z Z ai; Z H Qm(bn+1 7n
qlzc:,/_*_l k=1 =1 1l<j<n+1 .7‘:11-;:?2%71 m=1
i—1
—dsn . K- (D+XN)T]I a; .
q;q;i=n J=
n—1 [
DY 5 (T @, )ain®
=1 1<r<n r>q;, 3a, (qa, qa+1) (Lint1) k=1,k#a
n—1 i—1
0 2 2 ke (DN T a5, )i (34)
=1 q;q;=l j=1

This proves the Serre relation for s # 0,1, n. Consider the case s = n. We want to
show [[p(Fo)ap(Fn)]up(Fr)] = 0.
n—1

To prove this, first recall p(F,,) = annt1 — Y Ap,nt1ay - Now using (34),
p=1

[[ (FO)XP(F )]/.Lann—H]

= |:<a" n+1 Z H anQk+1

q; 7n+1 -
n—1 ’

1—1
* *
-Y Y ;X I g00) @)
I=11<j<n+1 T, d;j=q;;1>q;—1 m=1 L
1—2

= ~anntl Z H a;ka+17
a k=1

q;_1=n

whereas

= 2 lp(Fo) s p(Fn)luap ntrag, ]

n—1 1—1

— *

== % [(@nnr £ T G,
q-:‘31.+1 k=1

‘ i—1

) * * *

- Y ay X I 60000) Gnnd)]

1<i<j<n+1 q; j=qi;1>qi—1 m=1 H
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n—1 1—2 n—1 i—1

= Onnt1 Z Z 1:[ Aeqrt1 P’ + Z Aln+1 Z H a;mqm+1a?,n

4 1=p =1 q; ¢i=n;1>q;—1 m=1

—

n—1
_121 ALnt1 ) 2. H qm(I'm+1 pna?

p=1 q;n+l=q;;l>q;—1=p m=1

Hence, [[p(F0)xp(Fy)lup(Fn)] = 0.
For s =1 we get p(F1) = a1,2 and hence

[p(Fo)ap(F1)]
1—1
= Z Qrj Z H2 aZ]. qi+1 ai,nJrl

1<r<j<n+1 q; j= q1 r>qi-1,92=2 J
i—1

+ Z Z Haq qg+1q)b + Z Z 1:[ qu]+1 Da:,nJrl‘

q i
r<n—+l1 - = 1<r<n - 2 q,—r

Thus, [[p(Fo)xp(F1)]up(F1)] =0

Next up is the calculation for [p(Fo)a[p(Fo)up(F1)]]:

For a partition q = (1 = ¢1,42,-.-,¢,n + 1), recall that we set I(q) = i. We
now write [,O(Fo))\p(Fl)] = A()l + B01 + 001, where

l(q)—1

AOl = Z Qrj Z H a/:;jqj+1a”>lk‘,n+1

1<r<j<n+1 A I=q1(q); T2q1(p)—1,92=2 J=2

I(q)

By = Z H g,q;1, POr

r<n 24y (q ) az2= 2J

l(q)—1

Co1 = E Z Hg azﬂ'qﬂl"{'Da:ynJrl’

1<r< a =
Srsn a2=2; 4y (=" J

and Fyp = A+ B+ C, where

l(q)—1
= — . * *
A= Z QA _ Z H Qg g1 Yrnt1
1<r<j<n+l1 UG I=q(q); T2 (p)—1 =1
1(q)

- Z Z H qjqﬁ_l ( )

1<r<n+1 r>qq),q j=1
a)—1

C=- Z Z H QJ‘ZJ-H ' Da:1"+1'

1<r<n+1 r=qyq),4 Jj=

Sy
Il

Then [Fox[FouF1]] = [AxAo1] + [BaBoi] + [AxBoi] + [BaAo1] + [AxCo1] + [Cx Ao1]-
Now we calculate each summand above, and simplify

[AxAo1]
l(q)—1 I(p)—1
_ . * * * *
- Z ) Z a’f’J H aq,ql+1ar,n+1)\a5k H ap§p5+1as,n+1
1<r<j<n+1 B I=(q)i T2 (q)—1 =1 £=2
1<s<k<n+41

p; k=p(P); s2Py(p)—1,>P2=2
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l(p)—1
= = Z Z ask([aTjA 51:[2 a;£p§+1]a:,n+1

1<r<j<n+1 Q;qul(q)ﬂ'qu(q)_l
tss<ksn+4l o k=p|(p); $2P|(p)—1+P2=2
l(p)—1 l(q)—1

* A * * *
+ £H2 apgngrl[aTJ)\as,nJrl]) ll_Il aqlql+1a’r,n+1

U(a)—1
* *
- Z Z arj([ ZI—[l aflle+1>‘a5k}ar,n+l

1<r<j<n+1 A I=49(q)i T2 (q)—1
1S6<kSnt1 e Ha) -t
P; =Pi(p)i SZPI(p)—12P2=

UC ! l(p)-1
* * * *
+ H at]lqz+1[ar,n+1)‘a5k]) H apsp5+1a’5,n+1'
=1 £=2
Re-indexing the above gives

l(p)—1

o asta,.j)\ I a'psp£+1]a’5,7l+1
lsr<jsndl 3= ir> _ =
1§§<igﬁ+1 W I=(q) (q)—1 £=2

Pi k=p|(p)i 2P| (p)—1>P2=2
l(p)—1 I(q)—1
* L * *
+ £H2 ap§p§+1 [aTJAas,n+1]) lHI aqlql+1ar,n+1

l(q)—1
* *
- E E as]‘?([ H anQl+1)‘aTj:|aSJl+1
=1

1<s<k<n+1 9 k=ay(q)5 5241 (q)—1

1Sr<jsntl P j=Py(p)i T2P|(p)—1+ P2=2
l(q)—1 I(p)—1
* * . * *
+ ll:II al}lqz+1[a87n+1>‘a7"1]> 51:[2 ap5p5+1a7"7"+1
I(p)-1 l(q)—1
_ * * *
= > > ase |1 Apepeta I1 Qgq141 Fs,n+1
1<s<k<n+41 aintl=a;(q)is2q(q)—1 £=2 =1
P;k:Pl(p)§SZ:”L(P)711P2:2
(-1 I(p)—1
* * *
+ > > ase I1 agq,, II e, 080
1<s<k<n+1 a4 k=4)(q); 5291 (q)—1 =1 £=2

P n+1=p ()i s2P|(p)—1+ P2=2

- > > sk
2<r<s,j<k<n+1l 9 I=a(q)i "ZU(q)~1, 3t; 2<t<U(P) —1; (1)) = (Pt .P41)
P k=D (p); S2P(p)—1>P2=2

I(p)—1 l(q)—1
* * * *
’ H apgpg+1 Qs n+1 H Ugrqi11 Qrnt1
£§=2,8#t =1

+ Z Z sk

1§2§-@<§§n+1 B k=qp(q)i 521 (q)—1> <UD —1; (15)=(a¢,a41)
lsr<jsntl P J=Pi(p)i "2P(p)—1> P2=2

Hq)—1 l(p)—1
* * * *
anQl+1a5,n+1 H apgp§+1a7“,n+1'
1=1,1#t =2
To show that the above summation is zero reduces to showing the following are
Z€ro:

l(p)—1 l(q)—1
e * *
I = Z H apspe+1 H Qg qi4+1
i nt+l=dp(q)i $24;(q)—1 £=2 =1
P; k=P (p); 82P|(p)—1 P22 l(q)fl l(p)fl

+ X > Il a
1<r<j<n+1 aik=aq;(q)i $29;(q)—1> Ft<U@—15 (mi)=(a¢,q¢+1) [=1,1#t
P J=P|(p)i T2PI(p)—1+ P2=2

* * *
aa peper Yrnt1
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Note that the first summation is over all partitions p and q and has summands of
the form a3, - - a;‘l(p)_lkaiqz e a;l(q)71n+1 with pypy—1 < s and ¢yq)—1 < s. The
second summation is over all partitions p and q and has summands of the form

* * * * * * *
1,45 Age_1,r,q,10 an(q)—l,ka27p3 apz(p)—lyjaﬁ"+1

— * oo a* cooqF * cooaqF *
- <a2,1)3 apl(p)flvjajvqt+2 at;(z(q)fhk)(al,% alhthaT,nJrl)’

where s > qyq)—1, $ > 17 > pyp)—1 and r < j < k. But these two sets of partitions
are the same, so I; = 0.
Similarly, if we look at the partitions for the summands of

l(q)—1 I(p)-1
— * *
Iy = > I Cqrq141 Il Bpepesa
4 k=q)(q)i 2491 (q)—1 =1 £=2
P; n+1=p)(5); $2P|(p)—1> P2=2
l(p

(p)—-
_ * * *
Z ) Z H apspg-H H anqz,+1a?”,n+1’
2<r<j<n+l1 B I=)(q) T2 (q)—1 £=2,6#t =1
3t; 2<t<l(p)—1; (1,J)=(Pt Pt 1+1)
P; k=D (p)i S2P|(p)—1> P2=2

1 l(q)—1

collecting partitions shows that Io = 0. Hence, [AxAp1] = 0.
One can also obtain:

[BxBox]

=—- > ( > H'(A+D)(iﬁia2qu))( > lﬁ)a;mlﬂ)

1<r<n “aq;m2>qi(q) P; r+1=pi(p); P2=2 1=2

—|—2< > H'(A_FD)(;ﬁiaZMﬁl))( 2 lﬁ)a;lm“)

A N>41(q) P; n>pi(p), P2=2 =2

_ )3 ,@.(/\+D)(;ﬁia;jqj+l))( ) lﬁ)a;lpl+l), (35)

1<r<n (q; r+1=q;(q) P; T>Pi(p),P2=2 =2

and the following identities

[AxBo1] = — > > Xn: XP:

1<r<j<n+41 . a =1
STIEM Gma g g -1 s2Py(p)- P2 =2
l(q)—1 I(p)
* i * *
I Aququ41 {arﬁ‘ H apjpj+1}ar7n+1q)(bs)
=1 7j=2
n
=1 2<r<j< q P
ST RSTISMHL gy s a1 w2y p2=
l(q)—1 I(p)
* . * *
lHI aqzqz+1 |:a”)‘ H2 apjpj+1:|ar,n+1q>(bs)’
= ]:

Bado] = = ¥ ) SNDY

1< < 1 . =1 ;8>
Sr<jsnt I=4)(q)i T2 (q)— 17 92=2 5 Pi $ZPi(p)

l(g)—1 I(p)

lH2 aZHIH—l [ Hl a;ijl)\arj}a;f’nJrl(I)(bs)
= J:
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|

\
w
s

> > >
2<r<j<n+1 a
(-1 I(p)

H a;l‘]l+l H a;jp_7‘+1 AQrj aiJH-l(I)(bS)'

1=2 j=1
Computing the A-brackets above, then collecting and re-labelling partitions yields
[AxBo1] + [BaAo1] = 0.

Next we calculate

P
I=41(q)i T2 (q)—1> 9272 S2Pi(p)

[AxCo1]
Ha)-1
_ . * *
e (> I Ggtiin 2 D
1<r<j<ntl =) T D@1 =1 1<s<n+1 P; s=pi(p), P2=2
i(p)—1

* *
HQ apkpkﬁ—lli Das,nJrl}

l(q)—1
_ * * *
-- ¥ ¥ S (I G ) et Dat
1<r<j<s<n+1l 4I7=9(q); P, 5=P(p),P2=2 =1
r24)(q)—1 Ft:(Pt,pe41)=(r7)

l(p)—1
Qa

k=2,k#t

l(a)-1
* *
-5 ) S D)1 g, )atan)
1<s<n+1 q;n+1=q(q); $2qi(q)—1 P;S=Pi(p), P2=2 =1

l(p)—1

*
T @epsn-

PkPk+1
k=2

*
PkPr+1

While on the other hand, we have

[CxAp1]
l(p)—1
j— * * .
= _[1< ) zp: k;l:[1 Uppir DS 1 1<t z:< o Arj Xq:
Setl ey T sressEn I=1(q)i T2 a1 (q)— 1> 9272
l(q)—1
* *
H aqzqz+1ar7"+1:|
=2
l(q)—1
_ * * *
- Z Z Z ( H aqlql+1)ar,n+1"{'Das,n+1
1<r<j<s<n+1 G I=ay(q) P, S=Pi(p) =2
r2qp(q)—1>92=2 3t:(Pr.Pe41)=(r7)
l(p)—1 l(q)—1
* * *
a’Pk;Dk+1 - Z Z Z H aqqul a’s,n+1’% ! (A + D)
k=1,l#t 1<s<n+1 aintl=q(q) P,s=pip) =2
Squ(q),11(12:2
l([ilfl
*
a .
PkPk
k=1 i

For the factors with q; n + 1 = qq); $ = Q(q)-1> Ps $ = Pip), P2 = 2, one
applies the following type of calculation:

l(q)—1 § U(p)-1 .
—Ii-()\—FD)( ll:ll aqlql+1)as7n+1 kl:[2 Uprpria

* * * * *
—# - (A+ D) (ajy, aqz(q)—17n+1)as,n+1a2ps T p)-1,s
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= —Kk- ()‘ + D) (G’TQZ e a;z(q)—hn-kl)a;ps T aT(P)—lvsa;”"'l
—K - ()\ + D) (aik(p ce azl(q)fl,n—i-l)a;pg e a‘zk(p),n+l

Ua') ey
i+ D)( T agy ) T g

949
=1 19141

where q' := (1,q2,...,qq)-1,7 + 1) (so ql’(q,)_s_1 =n+1 and ql’(q,) = q(q)—1) and
I(d') < s =1(p). The other factors can also be simplified, and as a consequence we
obtain

[AxCo1] + [CxAo1]
-- ¥ ¥ &0+

1<s<n+1d;8>q(q)

S D VR O

1<s<n+1q;5=qi(q)

l

e

l(p)
aZlql+l) ( Z H a;kpk+l)
P, $=DPi(p), P2=2 k=2
I(p)
aZZQHI) ( E H2 a;kpk+1)' (36)

P, $2Pi(p), P2=2 k=

Sli=

N
I
A

Now if we set

1(q) I(p)
B(t):= > H A, and C(t) == > 11 [

A t=qi(q) I= P, t=pi(p), P2=2 k=2

then by induction one can show that

% (5 8@)ew) + 3, (86)( X ¢@))

s=1 \\g=1 s=1 4=
=2((380)( xc0))
:i((qus’(q))awn) - E (se+1( S ew))

(the identity above holds for any elements B(g) and C(s) in an algebra with coeffi-
cients in Z). Applying this identity to the sum of (35) and (36), we show

[BaBo1] + [AxCo1] + [CaAp1] =0

This completes the proof that [p(Fox)[p(Fo)up(F1)]] = 0.
The remaining relations [p(Fo)a[p(Fo)up(Fn)]] = 0 and [p(Fo)ap(Fo)] = 0 are
proven in a similar manner, where one applies to the following formal identities:

NE

(82;31( voo1 + 20,5 — 0, SH)(;; (Uijlzs(t)c(v))))
BHCE - BT o)

,‘_.r—t

T

HM

and
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For the Serre type relations for the E,., the calculations are the same as those

in [9, Lemma 3.5], where —vb,(2) — % (b, (2) + b}, (2)) is replaced by ®(b,) and

ey
2a

vr41(2) is replace by - Daj ;. We refer the interested reader to that paper

for the proof. O
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