Name:

Examination in: Introductory Calculus	Math Course Number	Math 120
Examination Date	$5-2-2010$	
Examination Time	$12: 15-1: 30 / 1: 40-2: 55$	

Total number of problems: 7
Professor: Ben Cox
Proctor: Ben Cox
Results available by: Nov. 14
Phone number: 953-5715
in: Maybank 117
Permitted aids: Proctor, TI-83 or TI-86 or equivalent calculator.

Show all work to receive full credit.

	Score
1	
2	
3	
4	
5	
6	
7	
Total	

1. Using logarithmic differentiation find the derivatives of the following functions:
a) $y=\left(3+3 x+x^{7}\right)^{2+2 x+x^{2}}$,

Sln:

$$
\ln y=\ln \left(3+3 x+x^{7}\right)^{2+2 x+x^{2}}=\left(2+2 x+x^{2}\right) \ln \left(3+3 x+x^{7}\right)
$$

Using the chain rule on the left and the product rule together with the chain rule on the right, we get

$$
\begin{aligned}
\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x} \ln y & =\frac{d}{d x}\left(\left(2+2 x+x^{2}\right) \ln \left(3+3 x+x^{7}\right)\right) \\
& =(2+2 x) \ln \left(3+3 x+x^{7}\right)+\left(2+2 x+x^{2}\right) \frac{1}{3+3 x+x^{7}} \frac{d}{d x}\left(3+3 x+x^{7}\right) \\
& =(2+2 x) \ln \left(3+3 x+x^{7}\right)+\left(2+2 x+x^{2}\right) \frac{3+7 x^{6}}{3+3 x+x^{7}}
\end{aligned}
$$

and thus

$$
\frac{d y}{d x}=\left(3+3 x+x^{7}\right)^{2+2 x+x^{2}}\left((2+2 x) \ln \left(3+3 x+x^{7}\right)+\left(2+2 x+x^{2}\right) \frac{3+7 x^{6}}{3+3 x+x^{7}}\right)
$$

b) $y=\sqrt[7]{\frac{3+2 x+x^{2}}{\left(1+x^{5}\right)^{3}}}$,

$$
\ln y=\ln \sqrt[7]{\frac{3+2 x+x^{2}}{\left(1+x^{5}\right)^{3}}}=\frac{1}{7}\left(\ln \left(3+2 x+x^{2}\right)-3 \ln \left(1+x^{5}\right)\right)
$$

Using the chain rule on the left and the product rule together with the chain rule on the right, we get

$$
\begin{aligned}
\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x} \ln y & =\frac{d}{d x} \frac{1}{7}\left(\ln \left(3+2 x+x^{2}\right)-3 \ln \left(1+x^{5}\right)\right) \\
& =\frac{1}{7}\left(\frac{2+2 x}{3+2 x+x^{2}}-3 \frac{5 x^{4}}{1+x^{5}}\right) \\
& =\frac{1}{7}\left(\frac{2+2 x}{3+2 x+x^{2}}-\frac{15 x^{4}}{1+x^{5}}\right)
\end{aligned}
$$

and thus

$$
\frac{d y}{d x}=\frac{1}{7} \sqrt[7]{\frac{3+2 x+x^{2}}{\left(1+x^{5}\right)^{3}}}\left(\frac{2+2 x}{3+2 x+x^{2}}-\frac{15 x^{4}}{1+x^{5}}\right)
$$

2. A kite 50 meters above the ground is drifting horizontally at a speed of 2 meters per second. At what rate is the angle between the horizontal and the string decreasing when the string has been let out 150 meters?

Ans: Let x denote the horizontal distance from the person holding the kite to a position directly below the kite and let h denote the distance from the person to the kite. Let θ denote the angle between the horizontal and the string. Then $\tan \theta=50 / x$ and $d x / d t=2$. Now

$$
\sec ^{2} \theta \frac{d \theta}{d t}=\frac{d}{d t} \tan \theta=\frac{d}{d t}\left(\frac{50}{x}\right)=-\frac{50}{x^{2}} \frac{d x}{d t}=-\frac{100}{x^{2}}
$$

When $h=150, x=\sqrt{150^{2}-50^{2}}=\sqrt{\left(3^{2}-1\right) 50^{2}}$ so that $x=100 \sqrt{2}, \sec \theta=h / x=150 / 100 \sqrt{2}=$ $\frac{3}{2 \sqrt{2}}$. Hence when $h=150$,

$$
\frac{9}{8} \frac{d \theta}{d t}=-\frac{100}{2 \times 100^{2}}, \quad \text { or } \quad \frac{d \theta}{d t}=-\frac{4}{900}=-\frac{1}{225}
$$

3. Find the first and second order derivatives of the following functions
a) $f(t)=7 t^{3}-3 t^{2}+1$.

Sln: $f^{\prime}(t)=21 t^{2}-6 t . f^{\prime \prime}(t)=42 t-6$.
b) $f(\theta)=\cos 3 \theta$.

Sln: $f^{\prime}(\theta)=-3 \sin 3 \theta . f^{\prime \prime}(\theta)=-9 \cos 3 \theta$.
4. Find the equation of the tangent line to the curve

$$
\left(4 x^{2}+y^{2}-4\right)\left(x^{2}+4 y^{2}-4\right)=1
$$

at $(x, y)=(1,1)$.
Ans: We differentiate with respect to x :

$$
\begin{aligned}
0=\frac{d}{d x}(1) & =\frac{d}{d x}\left(\left(4 x^{2}+y^{2}-4\right)\left(x^{2}+4 y^{2}-4\right)\right) \\
& =\left(8 x+2 y \frac{d y}{d x}\right)\left(x^{2}+4 y^{2}-4\right)+\left(4 x^{2}+y^{2}-4\right)\left(2 x+8 y \frac{d y}{d x}\right)
\end{aligned}
$$

When $(x, y)=(1,1)$ we get

$$
0=\left(8+2 \frac{d y}{d x}\right)+\left(2+8 \frac{d y}{d x}\right)=10+10 \frac{d y}{d x}
$$

Thus $\left.\frac{d y}{d x}\right|_{(x, y)=(1,1)}=-1$. The equation for the tangent line is $y-1=-(x-1)$ or $y=-x+2$. The graph of the curve together with the tangent line $y=-x+2$ is given to the right.

5. Find the absolute maximum and minimum of the function $f(x)=\frac{-x-1}{x^{2}+3 x+3}$ on the interval $[-4,1]$.

Ans. Observe that $f(x)$ is continuous on the interval $[-4,1]$ as the only place where it could possibly not be continuous is where the denominator $x^{2}+3 x+3=0$. But the only roots of $x^{2}+3 x+3=0$ are $x=\frac{-3 \pm \sqrt{9-12}}{2}$ which are complex. Thus the function $f(x)$ is always continuous. First we find the critical points:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-\left(x^{2}+3 x+3\right)-(-x-1)(2 x+3)}{\left(x^{2}+3 x+3\right)^{2}} \\
& =\frac{-x^{2}-3 x-3+2 x^{2}+5 x+3}{\left(x^{2}+3 x+3\right)^{2}} \\
& =\frac{x^{2}+2 x}{\left(x^{2}+3 x+3\right)^{2}}
\end{aligned}
$$

Now $f^{\prime}(c)=0$ implies $c^{2}+2 c=0$, which means $c=0$ or $c=-2$ are critical numbers. $f^{\prime}(c)$ is undefined when $c^{2}+3 c+3=0$ but we know from the above that this is never zero for c in the domain of $f(x)$. Hence the derivative is defined for all real x.

To find the absolute maximum we need to calculate

$$
f(-4)=3 /(16-12+3)=3 / 7, \quad f(-2)=1 /(4-6+3)=1, \quad f(0)=-1 / 3, \quad f(1)=-2 / 7
$$

The absolute maximum value of $f(x)$ is $f(-2)=1$ and the absolute minimum value is $f(0)=-1 / 3$ as $-1 / 3<-2 / 7$ (since $-7<-6$). The plot of the graph of $f(x)$ is given to the right.

6. Find the linearization of $f(x)=\sqrt{16+x}$ at $x=9$ and use it to approximate $\sqrt{27}$.

The linearization of $f(x)$ at $x=9$ is $L(x)=f(9)+f^{\prime}(9)(x-9)$. Since $f^{\prime}(x)=\frac{1}{2}(16+x)^{-1 / 2}$ we get

$$
L(x)=\sqrt{25}+\frac{1}{2 \sqrt{25}}(x-9)=5+\frac{1}{10}(x-9)
$$

Now

$$
\sqrt{27}=f(11) \cong L(11)=5+\frac{1}{10}(11-9)=5.20
$$

The graph of $f(x)=\sqrt{x+16}$ together with the linear approximation $L(x)$ are given to the right.

7. Suppose that $f^{\prime}(x) \leq 3$ for all x and $f(1)=2$. How large can $f(5)$ possibly be?

Since $f(x)$ is differentiable everywhere, it is also continuous everywhere and hence the Mean Value Theorem applies to any interval $[a, b]$. We choose $a=1$ and $b=5$ as these are numbers that $f(x)$ is evaluated at in the problem. The conclusion of the Mean Value Theorem says that there is a c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{f(5)-f(1)}{5-1}=\frac{f(5)-2}{4}
$$

Now by the hypothesis of the problem we also know that $f^{\prime}(c) \leq 3$ so that

$$
\begin{aligned}
\frac{f(5)-2}{4} \leq 3 & \Longrightarrow \quad f(5)-2 \leq 12 \\
& \Longrightarrow \quad f(5) \leq 14
\end{aligned}
$$

